首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
分析和计算了纳米粒子在聚合物熔体中的含时扩散系数与常规扩散常数. 采用广义朗之万方程描述扩散动力学,并通过模耦合理论计算摩擦记忆内核.为简单起见,只考虑了来自两体碰撞和溶剂密度涨落耦合作用两类微观因素对摩擦记忆内核的贡献. 采用聚合物参考作用点模型以及Percus-Yevick闭合条件计算了聚合物-纳米粒子复合溶液的平衡态结构信息函数;详尽分析了纳米粒子的尺寸与聚合物链的尺寸对扩散动力学的影响. 揭示了结构函数、摩擦记忆内核以及扩散系数等随着纳米粒子半径和聚合物链长的变化关系. 结果表明,对于小尺寸的纳米粒子或者短链的聚合物,短时间的非马尔可夫扩散 动力学特征比较显著,含时扩散系数需要更长的时间弛豫到常规扩散常数. 微观因素对扩散常数的贡献随着纳米粒子尺寸的增加而减小,却随着聚合物链长的增加而增大. 此外,模耦合理论得到的扩散常数与Stokes-Einstein关系的预测值进行比较,发现对于小尺寸的纳米粒子或者长链的聚合物,微观因素对扩散常数的的贡献占主导地位. 相反,当纳米粒子较大或者聚合物链长较短时,流体力学的贡献会发挥重要作用.  相似文献   

2.
3.
The dynamics of an overdamped Brownian particle in a thermal bath that contains a dilute solution of active particles is studied. The particle moves in a harmonic potential and experiences Poisson shot-noise kicks with specified amplitude distribution due to moving active particles in the bath. From the Fokker–Planck equation for the particle dynamics, the stationary solution for the displacement distribution is derived along with the moments characterizing mean, variance, skewness, and kurtosis, as well as finite-time first and second moments. An effective temperature is also computed through the fluctuation–dissipation theorem and show that equipartition theorem holds for all zero-mean kick distributions, including those leading to non-Gaussian stationary statistics. For the case of Gaussian-distributed active kicks, a re-entrant behavior from non-Gaussian to Gaussian stationary states and a heavy-tailed leptokurtic distribution across a wide range of parameters are found as seen in recent experimental studies. Further analysis reveals statistical signatures of the irreversible dynamics of the particle displacement in terms of the time asymmetry of cross-correlation functions. Fruits of the work is the development of an compact inference scheme that may allow experimentalists to extract the rate and moments of underlying shot-noise solely from the statistics the particle position.  相似文献   

4.
5.
We present the reduced dynamics of a bead in a Rouse chain which is submerged in a bath containing a driving agent that renders it out-of-equilibrium. We first review the generalized Langevin equation of the middle bead in an equilibrated bath. Thereafter, we introduce two driving forces. Firstly, we add a constant force that is applied to the first bead of the chain. We investigate how the generalized Langevin equation changes due to this perturbation for which the system evolves towards a steady state after some time. Secondly, we consider the case of stochastic active forces which will drive the system to a nonequilibrium state. Including these active forces results in an extra contribution to the second fluctuation–dissipation relation. The form of this active contribution is analysed for the specific case of Gaussian, exponentially correlated active forces. We also discuss the resulting rich dynamics of the middle bead in which various regimes of normal diffusion, subdiffusion and superdiffusion can be present.  相似文献   

6.
Comprehensive three-dimensional dissipative particle dynamics simulations are carried out to elucidate the diffusion mechanism of a strongly adsorbed polymer chain on a solid surface in dilute solutions. We find Rouse and reptation dynamics for polymer chain diffusing on smooth and rough surfaces (with obstacles or sticking points), respectively. Combining with scaling analysis, we find that the interactions between the surface and the fluid screen the hydrodynamic interaction. The different scaling as found for a polymer chain diffusing on a fluid membrane [Phys. Rev. Lett. 82, 1911 (1999)] and on a solid surface [Nature (London) 406, 146 (2000)] may be explained by the solid surface inhomogeneity that induces reptation.  相似文献   

7.
Ring polymers remain a challenge to our understanding of polymer dynamics. Experiments are difficult to interpret because of the uncertainty in the purity and dispersity of the sample. Using both equilibrium and nonequilibrium molecular dynamics simulations we have investigated the structure, dynamics, and rheology of perfectly controlled ring-linear polymer blends of chains of up to about 14 entanglements per chain, comparable to experimental systems. Linear contaminants increase the zero-shear viscosity of a ring polymer melt by about 10% around one-fifth of their overlap concentration. For equal concentrations of linear and ring polymers, the blend viscosity is about twice that of the pure linear melt. The diffusion coefficient of the rings decreases dramatically, while the linear polymers are mostly unaffected. Our results are supported by a primitive path analysis.  相似文献   

8.
A model for self-propulsion of a colloidal particle--the osmotic motor--immersed in a dispersion of "bath" particles is presented. The nonequilibrium concentration of bath particles induced by a surface chemical reaction creates an osmotic pressure imbalance on the motor causing it to move. The ratio of the speed of reaction to that of diffusion governs the bath particle distribution which is employed to calculate the driving force on the motor, and from which the self-induced osmotic velocity is determined. For slow reactions, the self-propulsion is proportional to the reaction velocity. When surface reaction dominates over diffusion the osmotic velocity cannot exceed the diffusive speed of the bath particles. Implications of these features for different bath particle volume fractions and motor sizes are discussed. Theoretical predictions are compared with Brownian dynamics simulations.  相似文献   

9.
A diffusion equation for a binary mixture and spinodal decomposition in the case of phase separation are considered. It is shown that, if the binding force between polymer chain links is weak, the diffusion equation for a binary mixture allows for the reduction to the Burgers equation with “viscosity”; that is, the coexistence of rarefaction waves and shock density waves is a possibility. The effect of strong bonds between polymer chain links on the spinodal decomposition dynamics is studied. It is demonstrated that strong bonding may cause a multiflux wave system with alternate stability to arise when the viscosity varies.  相似文献   

10.
At infinite dilution, a flexible polymer chain is an isolated coil swollen with solvent. The situation may be treated in a manner analogous to the swelling equilibrium of a lightly crosslinked network. From the thermodynamic relation, the degree of swelling of the polymer coil may be estimated (1, 2). This value, the degree of chain extension, was found to be somewhat larger than that estimated from intrinsic viscosity. This finding was interpreted to mean that the chain segments in the periphery of the coil are more extended than the average coil extension (1). In the present work the dilute but finite concentration range was examined. In this case a polymer coil is in equilibrium with solvent containing polymer chains of the same kind. As the concentration is increased, the excess extension of the chain segments in the periphery of the coil diminishes. With further concentration increase, the polymer coil continues to decrease in size to the size defined by the theta condition, when the free solvent disappears. At that concentration adjacent polymer coils begin to interpenetrate. This behavior is described quantitatively. The input data required for this calculation are the intrinsic viscosity of the polymer-solvent system of interest, that of the polymer at the theta condition, and the thermodynamic interaction parameter as a function of temperature, concentration, and molecular weight of the polymer. Thermodynamic equations and their derivations are described.  相似文献   

11.
We present a Brownian dynamics theory with full hydrodynamics (Stokesian dynamics) for a Gaussian polymer chain embedded in a liquid membrane which is surrounded by bulk solvent and walls. The mobility tensors are derived in Fourier space for the two geometries, namely, a free membrane embedded in a bulk fluid, and a membrane sandwiched by the two walls. Within the preaveraging approximation, a new expression for the diffusion coefficient of the polymer is obtained for the free-membrane geometry. We also carry out a Rouse normal mode analysis to obtain the relaxation time and the dynamical structure factor. For large polymer size, both quantities show Zimm-like behavior in the free-membrane case, whereas they are Rouse-like for the sandwiched membrane geometry. We use the scaling argument to discuss the effect of excluded-volume interactions on the polymer relaxation time.  相似文献   

12.
聚丙烯酸水溶液及α-A12O3悬浮液的流变性研究   总被引:4,自引:0,他引:4  
研究了pH、聚丙烯酸(PAA)浓度和分子量对PAA水溶液的粘度的影响,发现溶液的流变行为与溶液中PAA高分子链的离子化程度和构型密切相关,高分子链刚性程度的增加和链的伸展使溶液在pH为7-9时的粘度最大;研究了在PAA溶液中引入陶瓷粉体后悬浮液的粘度变化,发现当陶瓷粉体和PAA的量达到一定比值时悬浮液体系的粘度达到最小值,同时发现陶瓷粉体的粒径大小与这一粘度最小值和悬浮液流变特性也有关。  相似文献   

13.
Summary In this paper we analyse, with the path integral method, the diffusion of a quantum heavy particle moving in a strongly corrugated periodic potential both in the case when the particle is interacting with a thermal bath of phonons or of electrons. In the first case, the integration over the phonon degrees of freedom is performed exactly and in the large mass limit of the heavy particle it gives rise to an ohmic effective action which includes a nonlocal self-interacting term whose strength is the classical friction coefficient. In the second case, the integration over the electronic degrees of freedom is more difficult; we are able to derive an approximate effective action for the heavy particle in two different limiting cases: i) arbitrary large coupling between heavy particle and electrons and linear dissipation; ii) weak coupling and nonlinear dissipation. In i) we obtain an effective action for the particle equal to that found for the phonons but with a friction coefficient given by that of a classical heavy particle in a fermionic bath. In ii) we obtain a nonlinear, but still ohmic, dissipative term. Using an instanton approach we evaluate the mobility (and the diffusion coefficient) of the particle, whose temperature dependence shows a crossover from diffusive to localized behaviour at a critical value of the friction. Finally we discuss whether the electronic and phononic frictions can reach such a critical value. To speed up publication, the authors have agreed not to receive proofs which have been supervised by the Scientific Committee.  相似文献   

14.
A model system for the injection of fermionic particles from filled source sites into an empty chain is investigated. The ensuing dynamics for Hermitian as well as for non‐Hermitian time evolution, where the particles cannot return to the bath sites (quantum ratchet), is studied. A non‐homogeneous hybridization between bath and chain sites permits transient currents in the chain. Non‐interacting particles show decoherence in the thermodynamic limit: the average particle number and the average current density in the chain become stationary for long times, whereas the single‐particle density matrix displays large fluctuations around its mean value. Using the numerical time‐dependent density‐matrix renormalization group (t‐DMRG) method it is demonstrated, on the other hand, that sizable density‐density interactions between the particles introduce relaxation which is by orders of magnitudes faster than the decoherence processes.  相似文献   

15.
We consider the quantum stochastic dynamics of a system whose interaction with the reservoir is considered to be linear in bath co-ordinates but nonlinear in system co-ordinates. The role of the space-dependent friction and diffusion has been examined in the decay rate of a particle from a meta-stable well. We show how the decay rate can be hindered by inhomogeneous dissipation due to nonlinear system–bath coupling strength.  相似文献   

16.
A microscopic theory for cation diffusion in polymer electrolytes is presented. Based on a thorough analysis of molecular dynamics simulations on poly(ethylene) oxide with LiBF4, the mechanisms of cation dynamics are characterized. Cation jumps between polymer chains can be identified as renewal processes. This allows us to obtain an explicit expression for the lithium ion diffusion constant DLi by invoking polymer-specific properties such as the Rouse dynamics. This extends previous phenomenological and numerical approaches. In particular, the chain length dependence of DLi can be predicted and compared with experimental data. This dependence can be fully understood without referring to entanglement effects.  相似文献   

17.
A novel preparation method is reported for the microencapsulation of TiO2 nanoparticles by rapid expansion of supercritical solution with a nonsolvent. A suspension of TiO2 nanoparticles in carbon dioxide containing a cosolvent and dissolved polymer is sprayed through a nozzle to atmospheric pressure. After rapid expansion, polymer microspheres were obtained. The microspheres do not tend to agglomerate, since the pure cosolvent is a nonsolvent for the polymer. The structure and morphology of microspheres were investigated by SEM, TEM and XRD. The obtained polymer microspheres are microcapsules of TiO2 nanoparticles. The mean particle diameter and particle size distribution of microcapsules, could be controlled by changing the polymer concentration, pre-expansion pressure, temperature and injection distance. The polymer feed compositions are more effective than other factors on the control of particle size.  相似文献   

18.
The reduced dynamics of a quantum system interacting with a linear heat bath finds an exact representation in terms of a stochastic Schr?dinger equation. All memory effects of the reservoir are transformed into noise correlations and mean-field friction. The classical limit of the resulting stochastic dynamics is shown to be a generalized Langevin equation, and conventional quantum state diffusion is recovered in the Born-Markov approximation. The non-Markovian exact dynamics, valid at arbitrary temperature and damping strength, is exemplified by an application to the dissipative two-state system.  相似文献   

19.
The relaxation dynamics of correlated electron transport along molecular chains is studied based on a substantially improved numerically exact path integral Monte Carlo approach. As an archetypical model, we consider a Hubbard chain containing two interacting electrons coupled to a bosonic bath. For this generalization of the ubiquitous spin-boson model, non-Boltzmann equilibrium distributions are found for many-body states. By mapping the multiparticle dynamics onto an isomorphic single particle motion, this phenomenon is shown to be sensitive to particle statistics and, due to its robustness, allows for new control schemes in designed quantum aggregates.  相似文献   

20.
Using 3D Langevin dynamics simulations,we investigate the effects of the shape of crowders on the dynamics of a polymer chain closure.The chain closure in spherical crowders is dominated by the increased medium viscosity so that it gets slower with the increasing volume fraction of crowders.By contrast,the dynamics of chain closure becomes very complicated with increasing volume fraction of crowders in spherocylindrical crowders.Notably,the mean closure time is found to have a dramatic decrease at a range of volume fraction of crowders 0.36-0.44.We then elucidate that an isotropic to nematic transition of spherocylindrical crowders at this range of volume fraction of crowders is responsible for the unexpected dramatic decrease in the mean closure time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号