首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The preparation is reported of particles of photopolymerisable monomer/chiral dopant composites with a crystalline (Cr)‐chiral nematic (N*) phase transition. By mixing particles with different pitches of the N* phase in the Cr phase and crosslinking the liquid crystal (LC) monomer molecules by photopolymerisation in the planarly oriented N* phase, an N*‐LC composite film with a non‐uniform pitch distribution was obtained. Experimental results show that the bandwidth of the reflection spectrum and the location of reflection band of the composite films can be controlled accurately by controlling the pitch lengths of the N* phase of the particles. Effects of polymerisation temperature and UV intensity on the non‐uniform pitch distribution of N*‐LC composite films were investigated.  相似文献   

2.
Two nematic liquid crystal (LC) monomers containing double bonds in the side chain were designed and synthesised. Length of the side groups varied from 1 to 2 methylene units. The side-chain polymers were synthesised by hydrosilylation reaction. The molecular structures of the intermediates and the LC monomers were characterised by Fourier transform infrared, elemental analysis and nuclear magnetic resonance spectroscopy. The thermal phase behaviour of the monomers and polymers were investigated by differential scanning calorimetry and polar optical microscopy coupled with hot stage. The LC monomers showed only one nematic mesophase in the cooling process. And, the two polymers exhibit an enantiotroppic nematic mesophase either in the heating or in the cooling process.  相似文献   

3.
A series of new chiral monomers (M1–M4) and the corresponding siloxane polymers (P1–P4) containing menthyl groups were synthesised to establish the relationship between their structure and liquid crystalline properties. The effect of the mesogenic core rigidity and the spacer length on the phase behaviour of the monomers and polymers obtained in this study was discussed. The selective reflection of light for the chiral monomers was studied with UV-Vis spectrometer. Polarising optical microscopy, differential scanning calorimetry, X-ray diffraction and thermogravimetric analysis were used to characterise the phase behaviour and thermal stabilities. It was found that these chiral monomers and polymers were beneficial for the formation of the mesophases when a flexible spacer was inserted between the mesogenic core and terminal menthyl groups. M1–M3 showed enantiotropic chiral smectic C phase and cholesteric phase, and monotropic cubic blue phase on cooling cycle. M4 only showed cholesteric phase. P1–P4 showed a smectic A phase. With increasing the mesogenic core rigidity or decreasing the spacer length, the corresponding melting temperatures, glass transition temperatures and isotropic temperatures all increased.  相似文献   

4.
A magnetite (Fe3O4) nanoparticle/chiral nematic liquid crystal (N*-LC) composite was prepared and filled into a planar treated cell. The Fe3O4 nanoparticles had been modified by oleic acid so that they could be better dispersed in the composite. When a magnetic field was scanned on the outer surface of the cell locally, Fe3O4 nanoparticles moved towards the inner surface of the cell correspondingly, and the black expected information was displayed. When the magnet was applied to the opposite outer surface, the information was erased. After polymer network walls were prepared in the composite, the resolution of the information displayed increased. Then, through the formation of hydrogen bonds between the nanoparticles and chiral pyridine compound (CPC) doped in the composite, the pitch length of the N*-LC could be adjusted by altering the intensity of the applied magnetic field. The composite doped with CPC could potentially be used as a material for a type of reflective colour paper with magnetically controllable characteristics.  相似文献   

5.
Photochromic liquid‐crystalline copolymers consisting of a photochromic monomeric unit containing both a spironaphthoxazine group and an undecamethylene spacer, and a liquid‐crystalline monomeric unit containing both a cholesteryl group and a decamethylene spacer were prepared to investigate the effect of the thermal properties of the photochromic monomeric unit on the mesomorphic order of the side chain of the related copolymers. The photochromic liquid‐crystalline copolymers containing a photochromic liquid‐crystalline monomeric unit showed only a smectic phase. On the other hand, the photochromic liquid‐crystalline copolymers containing a photochromic non‐liquid‐crystalline monomeric unit showed a chiral nematic phase (cholesteric phase). The photochromic chiral nematic liquid‐crystalline copolymer containing 14 mol % photochromic monomeric unit reflected visible light around 104 °C. To lower the temperature range of reflection of visible light, cholesteryl oleyl carbonate was used as a chiral nematic plasticizer for the photochromic chiral liquid‐crystalline polymer systems. Photo‐induced pitch change of the mixture by means of UV irradiation was investigated and it was concluded that the pitch change observed under UV irradiation was mainly induced by thermal effect in the case of our system. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 887–894, 2000  相似文献   

6.
A series of liquid crystalline polymers (LCPs) have been synthesised by two cholesteric monomers M1, M2 and a nematic monomer M3. The chemical structures and liquid crystalline properties of the monomers and polymers have been characterised by FTIR, 1H-NMR, differential scanning calorimetry, thermogravimetric analyses, X-ray diffraction measurements and polarising optical microscopy. All LCPs show a high thermal stability with wide mesophase temperature ranges. For polymer P1 bearing only cholesteric LC monomers component, it shows a cholesteric phase, whereas others display a blue phase besides a cholesteric phase. The formation of the blue phase is based on the structures of the polymers and the produced biaxial helix. The glass transition temperature and isotropic temperature of the polymers decrease on heating cycle with increasing the content of M3 in the polymers. The specific rotation values of the polymers are temperature-sensitive. The reflection spectra of polymers P1P6 show that the maximum reflected wavelengths shift to long wavelength with increasing the content of M3 in the polymer systems. The frequency and intensity of the bands change sharply at the temperature where cholesteric phase changes to blue phase, but they show a weak dependence on temperature in the blue phase.  相似文献   

7.
A series of novel liquid crystalline monomers and polymers incorporating phenylbenzoate or phenylcinnamate segments as mesogenic cores have been synthesized to investigate the sensitivity of the photochromic cinnamoyl derivatives and to overcome the defects of the thermal instability of azobenzene. Their liquid crystalline, thermal, and photoinduced properties of all monomers and polymers were characterized. The polymers showed excellent solubility in common organic solvents such as CHCl3, toluene, and DMF and exhibited good thermal stability with decomposition temperatures (Td) at 5% weight loss greater than 340 °C and about 50% weight loss occurred beyond 430 °C under nitrogen atmosphere. The pitch length (about 574 nm) of the synthesized cholesteric polymeric film ( CP2 ) was estimated using scanning electron microscopy. These photochromic polymers exhibited strong UV–vis absorption maxima at about 264 or 320 nm. Moreover, photo induced configurational E/Z isomerization further changed the π‐electron conjugation systems leading to a decrease at the π‐π* transition and an increase in the range of 300 nm to 400 nm for photochromic copolymers. The thermal stability of the Z‐structural segment was confirmed by heating the polymer at 50 °C for over 5 h. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1289–1304, 2008  相似文献   

8.
The synthesis and characterization of nine polymethacrylates containing 4-alkoxy-4′-trifluoromethyltolane, 4-alkoxy-4′-cyanotolane, and 4-alkoxy-4′-nitrotolane side groups were described in this study. The phase behavior of the prepared monomers and polymers was characterized by differential scanning calorimetry, optical polarizing microscopy, and x-ray diffraction. All of the obtained monomers exhibit no mesophase, while most of the synthesized polymers reveal enantiotropic mesomorphism. The polymethacrylate containing 4-propanyloxy-4′-nitrotolane side groups was the only one which shows no mesomorphic behavior. Both the spacer length and the nature of terminal groups have profound influence on the phase transition temperatures and thermal stability of the mesophase. The polymers with longer spacers tend to form a more ordered mesophase with a wider temperature range. Among three polymers with the same spacer length, the polymer with a trifluoromethyl terminal end group is inclined to form a more ordered mesophase than the other two polymers. No side chain crystallization occurred for all obtained polymers. © 1994 John Wiley & Sons, Inc.  相似文献   

9.
ABSTRACT

A series of non-symmetric liquid crystal (LC) dimers with the same chiral core 1,2-propanediol (PD) have been synthesised, termed as ABBA-PD-TFBA, PBBA-PD-TFBA, ABA-PD-TFBA, PBA-PD-TFBA and AA-PD-TFBA, respectively, in which one of the two mesogenic groups, the fluorinated mesogenic unit, was kept fix and the other arm was different. The intermediate compounds and LC dimers were characterised by FTIR, 1H NMR, differential scanning calorimetry, thermogravimetric analysis, polarised optical microscopy and X-ray diffractometer (XRD). The results of the measurements indicated that ABBA-PD-TFBA, PBBA-PD-TFBA and ABA-PD-TFBA displayed optical activity and enantiotropic chiral nematic phase, and PBA-PD-TFBA was an enantiotropic nematic LC while AA-PD-TFBA was a monotropic LC, displaying both nematic phase and smectic A phase on cooling. The results indicated that PD was able to induce the chiral nematic phase, nevertheless, the rigidity of the mesogenic arm, the flexibility of the terminal group and even the type of the terminal chemical bond played an important effect on the thermal properties of the dimers, and even on the formation of the chiral nematic phase. It is also worth noting that C=C at the terminal helped to stabilise the LC phase.  相似文献   

10.
A series of side-chain liquid crystal (LC) polysiloxanes were synthesised with Poly(methylhydrogeno)siloxane, 4?-(undec-10-enoyloxy) biphenyl – 4 – yl 4- (trifluoromethyl) benzoate (Mth) and a chiral nematic (N*) LC monomer 1-allyl 10-(cholesteryl)-decanedioate (Mch). The chemical structures and LC properties of the monomers and polymers were characterised by FTIR, 1H-NMR, differential scanning calorimetry, thermogravimetric analysis, POM and X-ray diffractometer. Mch is monotropic N* LC. The homopolymer derived from monomer Mch is enantiotropic N* LC. Monomer Mth is a smectic A liquid crystal. The copolymers derived from Mch and Mth are N* LCs. The temperatures at which 5% weight loss occurred are greater than 300°C for all the fluoro-containing polymers, and the residue weights of the samples at 600°C increased slightly as the content of trifluoromethyl mesogens increased in the polymers. The glass transition temperatures of the polymers increased as trifluoromethyl mesogens increased, too. The N*–I phase transition temperatures show a negative deviate from ideal or linear behaviour. The values of the enthalpy changes for the cholesteryl containing polymers are rather low and this is attributed to the biaxiality of cholesteryl moiety which tends to reduce the change in the orientational order at the N*–I transition. Compared to the monomers, the polymers show wider mesophase region.  相似文献   

11.
Three new achiral five-ring banana-shaped homologous series have been synthesized and their liquid crystalline properties studied by polarizing microscopy, differential scanning calorimetry, and electro-otpical analysis. The compounds consist of two identical mesogenic structures of bis (alkoxycinnamoyloxybenzoates) linked on a different central ring (unsubstituted or methyl-substituted). The length of the terminal alkoxy groups was varied from heptyloxy to dodecyloxy; the hexadecyloxy group was also included in the study. It was found that the polymorphism of compounds can be strongly dependent upon molecular structure in this class of compound. In particular, substituents on the central ring may exert a significant effect on the type of mesophase observed.  相似文献   

12.
Four series of liquid crystalline (LC) compounds containing benzyl perfluoroalkyl thioether groups (BFT), 4-n-alkoxyphenylbenzyl perfluoroalkyl thioethers (nO-BBFT-FmF), 4-n-alkoxyphenylbenzyl perfluoroisoalkyl thioethers (nO-BBFT-FmIF), 4-n-propylcyclohexylbenzyl perfluoroalkyl thioethers (3-C1BFT-FmF) and 4-ethylcyclohexyl-3'-fluorobenzyl perfluoroalkyl thioethers (2-C1FBFT-FmF), were synthesized and their mesomorphic phase transitions and electro-optical properties investigated. nO-BBFT-FmF and nO-BBFT-FmIF have SmA, SmB and CrE phases, while 3-C1BFT-FmF and 2-C1FBFT-FmF showed a SmB phase. It was found that the appearance of a LC phase and the thermal stability were closely connected with the chemical structures of the rigid core part and the terminal groups. The electrooptical properties were investigated for BFT using ZLI-1132 as nematic solvent. Some of the BFT compounds have a good solubility of 15 wt % in ZLI-1132 and can be used as a component for lowering the refractive anisotropy (Delta n) of the host ZLI-1132 solvent.  相似文献   

13.
A new series of copolymers with optically-active liquid crystalline side chain units has been synthesized from the comonomers (S)-2-[2-(4′-cyano-4-biphenylyloxy-1-methylethoxy]ethyl methacrylate ( 1 ) and di[6-(4-methoxy-4′-oxybiphenyl)hexyl]-2-methylene butane-1,4-dioate ( 4 ). Chiral nematic phases were exhibited by two members of the series, rich in monomer 1 , while a smectic phase was exhibited in copolymers rich in 4 . While it was thought possible that ordered chiral liquid crystalline phases may be induced by copolymerizing chiral mesogenic monomers with mesogenic derivatives of itaconic acid where the high side chain density encourages greater ordering in the system, no evidence of smectic C* phases could be found in the present systems. © 1993 John Wiley & Sons, Inc.  相似文献   

14.
The synthesis is described of four new chiral liquid crystalline monomers (M2–M5 ) and their corresponding side‐chain homopolysiloxanes (P2–P5 ) containing menthyl groups. Chemical structures were characterised using FT‐IR or 1H NMR spectra, and specific optical rotations were evaluated with a polarimeter. The phase behaviour and mesomorphic properties of the new compounds were investigated by differential scanning calorimetry, thermogravimetric analysis, polarising optical microscopy, UV/visible/NIR spectrocopy and X‐ray diffraction. The monomers and homopolymers with more aryl segments showed noticeably lower specific optical rotation value. The monomers M2–M5 formed a cholesteric or blue phase when a flexible spacer was inserted between the rigid mesogenic core and the terminal menthyl groups by reducing the steric effect. M2–M5 revealed enantiotropic cholesteric phase. Moreover, M2 also exhibited a monotropic smectic A (SmA) phase, and M4 also exhibited a cubic blue phase on cooling. The selective reflection of light shifted to the long wavelength region with increasing rigidity of the mesogenic core for M2–M5 . P2–P5 exhibited SmA phases, and the mesogenic moieties were ordered in smectic orientation with their centres of gravity in planes. Melting or glass transition temperature and the clearing temperature increased, and the mesophase temperature range widened with increasing rigidity of the mesogenic core.  相似文献   

15.
16.
A polymer stabilised liquid crystal film with the order and the molecular alignment of a smectic-A phase at a microscopic level, but with the planar molecular alignment of a chiral nematic phase at a macroscopic level, was prepared. This kind of order and alignment of the molecules of the liquid crystal resulted in the film reflecting circularly polarised incident light with the bandwidth of the spectrum over the wavelength range of 300–2500 nm.  相似文献   

17.
Six three-arm star-shaped liquid crystals (LCs) based on chenodeoxycholic acid (CDCA), termed as G-BH, G-YD, G-FD, G-DJ, G-DZ and G-BX, respectively, have been synthesised. CDCA was used as the chiral core and the nematic side arm, 6-(4-(ethylbenzoyloxy) phenoxy)-6-oxohexanoic acid, was chosen to be introduced into the two hydroxyl of CDCA to synthesise cholesteric LC (CDCA2EA) and different structures were introduced into the carboxyl group of CDCA to prepare the three-arm star-shaped LCs. Chemical structures and LC properties of the six three-arm LCs were characterised by FTIR, 1H-NMR, differential scanning calorimetry, thermogravimetric analysis, X-ray diffraction and polarised optical microscopy. G-BH and G-DJ displayed cholesteric phase with a long helical pitch; G-BX displayed nematic phase; and G-YD, G-FD and G-DZ displayed cholesteric phase on heating and on cooling. These results indicated that not only the chiral core CDCA but also the structures of the side arms played an important role in inducing the cholesteric phase of the CDCA-derived LCs. G-DZ displayed selective reflection, a wider ?λ and red shift on cooling.  相似文献   

18.

Abstract  

Novel ferroelectric liquid crystalline (FLC) polyacetylenes, namely, “side-end-fixed” type of PAM 6 OTPhOR* and “side-on-fixed” type of PAM 3 OCO(TPh)OR* were designed and synthesized in high yields (89.3 and 62.0%), respectively, where the terphenyl was linked at the different positions. The thermal stability of PAM 3 OCO(TPh)OR* is better than PAM 6 OTPhOR* owing to the “jacket effect” from terphenyl pendant linked at the waist position well protecting the main chain from the perturbations. The PAM 3 OCO(TPh)OR* shows enantiotropic chiral smectic A phase (SmA*), but it is noteworthy that the PAM 6 OTPhOR* exhibits enantiotropic chiral smectic C phase (SmC*) responsible for ferroelectric liquid crystallinity. Compared to “side-end-fixed” type of polymer, the “side-on-fixed” type shows better light emitting property, ascribed to the mesogen linked at the waist position has stronger tendency to enhance the main-chain coplanarity. Furthermore, the circular dichroism (CD) spectra demonstrate that the asymmetric force field generated by the chiral center affects the secondary structure of PAM 3 OCO(TPh)OR*.  相似文献   

19.
A series of asymmetrically disubstituted liquid crystalline compounds with high birefringence based on phenyldiacetylenes was synthesised by coupling of intermediate molecules with a phenylacetylene fragment. The structures of the intermediates and resulting compounds were confirmed by Fourier transform infrared, 1H nuclear magnetic resonance and Matrix assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry. Their liquid crystalline behaviour, including transition temperatures and phase sequences, was investigated by differential scanning calorimetry and polarising optical microscopy. As an important parameter, the birefringence was also measured, using polarising light interferometry. The results indicated that the compounds exhibited different liquid crystalline phases in the high temperature region, with high birefringence values. In addition, the selective reflection characteristics associated with birefringence under conditions which maintained the matrix nematic liquid crystal and the concentration of chiral dopant were studied.  相似文献   

20.
A new series of side-chain chiral liquid crystalline elastomers derived from M1 (cholest-5-3-ol(3β)-4-(2-propen-yloxy)]benzoate) and MC(2,5-[3,5-bis(4-(3-(4-(allyloxy)phenyl)propanoyloxy)benzoyloxy)benzoic acid]isosorbide diester). The structures of monomers and elastomers measured by using Proton Nuclear Magnetic Resonance Spectra (1H-NMR) and Fourier transform infrared spectroscopy (FTIR) separately are consistent with our design. IIP~VIP all appeared blue Grandjean (GJ) texture on the heating cycle or cooling cycle. The glass sheets of IIP~VIP were made under 150°C and measured its ultraviolet–visible spectrophotometry by PerkinElmer Lambda 950 instrument (Shelton, CT, USA). IIP~VIP all have absorptions at about 481~483 and 561~562 nm. The optical activities were measured at different temperatures on heating and cooling cycles. And the blue selective reflection of IIP~VIP on the round glass sheet can be seen. The elastomers containing less than 6 mol% of the crosslinking units displayed elasticity, reversible phase transition and high thermal stability. The glass transition temperatures reduced first and then increased, the isotropisation temperatures and the mesophase temperature ranges increased first and then decreased with increasing content of crosslinking unit. The thermogravimetric analysis (TGA) results showed that the temperatures at which 5% weight loss occurred (Td) were greater than 310°C for all the polymers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号