首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vikas Mittal 《哲学杂志》2013,93(36):4498-4517
The resistance of modification molecules bound to montmorillonite platelet surfaces towards structural damage at high temperature is a major parameter guiding the formation of optimal interface between the filler and polymer phases in a nanocomposite material. As nanocomposites are generated by melt-blending of modified mineral and polymer, it is necessary to quantify the thermal resistance of the filler surface modification at the compounding conditions because different modifications differ in chain length, chemical structure, chain density, and thermal performance. A number of different alkyl ammonium modifications were exchanged on the montmorillonites with cation exchange capacities in the range 680–900?µequiv.?g?1 and their thermal behaviour was characterised using high resolution thermogravimetric analysis. Quantitative comparisons between different modified minerals were achieved by comparing temperature at 10% weight loss as well peak degradation temperature. Various factors affecting thermal stability, such as length and density (or number) of alkyl chains in the modification, presence of excess modification molecules on the filler surface, the chemical structure of the surface modifications, etc. were studied. The TGA findings were also correlated with X-ray diffraction of the modified platelets.  相似文献   

2.
Aqueous suspensions of composite nanoparticles of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) are fabricated by miniemulsion method using three different ionic surfactants. The aim is to study how the length and conformation of the surfactants alkyl chains affect the properties of the nanoparticles. While the morphology and dimensions of the nanoparticles are similar, UV–vis spectroscopy evidences that the internal aggregation and ordering of the P3HT chains varies within the three nanoparticle formulations. The surfactant with branched alkyl chains promote the highest degree of ordering of P3HT chains in the nanoparticles (leading to increased conjugation length). In contrast, the lowest ordering is found for the nanoparticles with the surfactant having the shortest linear alkyl chain. The optical/structural properties of nanoparticles are partially retained in the films. Besides, the surfactant with branched alkyl chains favors the strongest coalescence of nanoparticles in the thin film, promoting a further ordering of the polymeric chains in the most external shell of the nanoparticles as evidenced by steady-state and time-resolved UV–vis spectroscopy and confocal fluorescence microscopy. These findings might guide the engineering of new surfactants for composite nanoparticles for optoelectronic applications.  相似文献   

3.
We study tethered membranes grafted by polymer chains on one side. Mean-field and scaling arguments predicting a spontaneous curvature are compared to the results of lattice-based Monte Carlo simulations using the Bond Fluctuation Model, which are carried out for various grafting densities and chain lengths. We show that already slightly overlapping chains bend the membrane significantly. This proves the entropic origin for the bending stiffness, which is of order kT . To understand the membrane curvature under conditions of very small bending stiffness we apply a geometrical model which takes into account the state of chains at the overlap threshold. Applying a thermal solvent model for the grafted chains, we demonstrate that the bending direction of the membrane can be triggered by variation of the solvent quality. This indicates that polymer-decorated membranes may serve as switchable nanoscale devices.  相似文献   

4.
Several alkylated carboxymethyl starches (CMS) with different alkyl chain lengths were prepared. The influence of the number of alkyls on the thermal stability and rheological properties, such as thickening properties, salt-tolerance, temperature sensitivity and time-dependent rheological behavior, are discussed. The initial decomposition temperature (IDT) of alkylated CMS reached 263°C ~293°C which, as compared to the IDT for CMS itself (230°C), indicated that the thermal stability of CMS was improved after being alkylated. The solution viscosities of the alkylated carboxymethyl starch increased with the increasing of alkyl length. With the alkyl chain length increasing from C2 to C8, the viscosity increased from 400 mPa·s to 38000 mPa·s. The weak hydrophobic aggregation of the alkyl groups did not improve the shear-resistance and relative hysteresis area. But the temperature sensitivity of alkylated CMS was improved as the chain length of the alkyl groups increased, as the activation energy (Ea) value decreased from 2.082 kJ·mol?1 to 0.077 kJ·mol?1; Improving the rigidity of the molecular chains and reducing the network structure of the hydrophobic contribution to the viscosity of the solution are benefits for improving the salt-tolerance and shear-resistance of the aqueous solution.  相似文献   

5.
Hydrogen-bonded polar nematic liquid crystal series with the general formula nOBAF (n = 7—12) is studied. The mesomorphic characterization is demonstrated through differential scanning calorimetry (DSC) and polarized optical microscopy (POM). The complexes with short alkyl chains (n=7, 8) present a wide nematic range and monotropic smectic F mesophase, whereas the longer alkyl chain (n=10—12) analogues show high melting and low clearing mesomorphic liquid crystals. The thermal range of the mesophase and the birefringence increase with chain length decreasing. Furthermore, the effect of the nanoparticles (LiNbO3) on the thermal and the electrical behavior of 8OBAF are investigated. The presence of LiNbO3 nanoparticles increases the conductivity and reduces the resistivity of the complex.  相似文献   

6.
Classical density functional theory (cDFT) is used to investigate electrosorption of ionic liquids in porous electrodes within the framework of a coarse-grained model. The purpose of this study is to clarify the influence of the side alkyl chains of imidazolium cations on the electric double layer (EDL) capacitance that was studied in a number of recent investigations but with contradictory trends. For an ionic liquid near a planar electrode, cDFT predicts that the capacitance falls by extending the alkyl chain length of cations because neutral segments reduce the packing density of counterions thus the charge density. The side-chain effect is more complicated for ionic liquids in micropores owing to space-charge competition. Adding neutral segments to imidazolium cations always reduces the capacitance in cases where the surface electrical potential of micropores is sufficiently large. However, the capacitance shows a nonmonotonic dependence on the alkyl chain length at intermediate surface potentials. Surprisingly, addition of neutral segments to the cations has the most pronounced effect on the EDL capacitance in cases when the surface potential is positively charged. These findings challenge the conventional assumption that the alkyl side chains of imidazolium ions only negatively impact ionic liquid performance in charge storage.  相似文献   

7.
周俊  李保文 《物理》2013,42(02):89-99
微纳米电子器件的散热问题是目前制约半导体工业发展的重要瓶颈。将电子器件工作时产生的热量传输到封装外壳后再耗散到环境中去需要好几个步骤,每个步骤需要不同的方法,其中有些步骤涉及到了固体中的界面热传导问题和高性能导热材料。文章先介绍了近期关于微纳米尺度器件散热问题中碰到的热传导问题在理论和实验两方面的研究进展。在热传导理论和计算方法方面,作者讨论了傅里叶定律在微纳米尺度的适用性,介绍了玻尔兹曼方程、分子动力学模拟和格林函数方法。在热传导实验方面,介绍了用扫描热显微镜测量样品表面温度和用超快激光反射法测量薄膜材料的热导率及其界面热阻。然后介绍了界面热传导问题,包括界面热阻的计算以及电子—声子相互作用对界面热阻的影响。最后作者介绍了关于高性能导热材料方面的最新进展,包括碳基导热材料、晶格结构类似于石墨烯的氮化硼材料、高分子有机材料以及界面热阻材料。  相似文献   

8.
Two-dimensional structures of pyrimido[5,4-d]pyrimidine derivatives (PD) were studied by scanning tunneling microscopy (STM) at solid/liquid interface. In order to tune the intervals of functional unit (hydrogen bonding site) in the molecule, the PD with different numbers and length of alkyl chain were designed and synthesized. STM observation at highly oriented pyrolytic graphite (HOPG)/1-phenyloctane interface revealed that the PD with four alkyl chains formed a columnar structure, and the alkyl chains were not interdigitated. By contrast, the PD with two alkyl chains formed similar columnar structure, whereas the alkyl chains were interdigitated. These structural features of the PD indicates that the intervals of the functional unit, i.e., hydrogen bonding sites in the PD can be controlled by changing not only the length but also the number of alkyl chains.  相似文献   

9.
Multiply-alkylated cyclopentanes (MACs) with different molecular structure were deposited on single crystal silicon wafers coated with a thin aminopropyltrimethoxylsilane (APS) film as an adhesive layer to form MACs-APS films. The thickness, wetting behavior and nano-scale morphologies of the films were characterized by means of ellipsometry, contact angle measurement, and atomic force microscopy (AFM). The friction and wear behaviors of the thin films sliding against a Si3N4 ball were examined on a UMT-2MT tribometer in a ball-on-disk contact mode. The worn surfaces of the MACs-APS films and the counterpart Si3N4 balls were investigated with a scanning electron microscope (SEM). It was found that the water contact angles on the MACs-APS film increased with the MACs alkyl chain-length. The MACs-APS film exhibited higher load-carrying capacity and better friction reduction and anti-wear behavior as compared with the APS film. This is suggested to occur because the APS acts as a strongly bonded lubricant phase and MACs as a mobile lubricant phase in the MACs-APS film. The increase of the chain-length of the alkyl substituent in the MACs compounds resulted in improved tribological properties of MACs-APS film. It is suggested that the longer alkyl chains are much more flexible and can dissipate the mechanical energy during the shearing process more easily than the short chain compounds. MACs with the longer chains have stronger chain-chain interactions and the larger MAC molecules have stronger intermolecular interactions, resulting in the good tribological properties of MACs-APS film.  相似文献   

10.
We have used the hetero-SAFT-VR approach developed by McCabe and collaborators [Mol. Phys. 104, 571 (2006)] to investigate the phase equilibria of a number of binary and ternary mixtures of n-alkanes, perfluoro-n-alkanes, and perfluoroalkylalkane diblock surfactants. We focused our work on the understanding of the microscopic conditions that control the phase behaviour of these mixtures, with a particular emphasis of the effect on the liquid–liquid separation and the stabilisation of n-alkane + perfluoro-n-alkane mixtures when a diblock surfactant is added. We used very simple molecular models for n-alkanes, and perfluoro-n-alkanes that describe the molecules as chains with tangentially bonded segments with molecular parameters taken from the literature. In the particular case of semifluorinated alkanes or SFA surfactants, we used an hetero-segmented diblock chain model where the parameters for the alkyl and perfluoroalkyl segments taken from the corresponding linear alkanes and perfluoroalkanes, as shown in our previous work [J. Phys. Chem. B 111, 2856 (2007)]. Our goal was to identify the main effects on the phase behaviour when different perfluoroalkylalkane surfactants are added to mixtures of n-alkanes and perfluoro-n-alkanes. We selected the n-heptane + perfluoromethane binary mixture, and studied the changes on the phase behaviour when a symmetric (same number of alkyl and perfluoroalkyl chemical groups) or an asymmetric (different number of alkyl and perfluoroalkyl chemical groups) diblock surfactants is added to the binary mixture. We have obtained the phase diagrams of a wide range of binary and ternary mixtures at different thermodynamic conditions. We have found a variety of interesting behaviours as we modify the alkyl or/and the perfluoroalkyl chain-length of the diblock surfactants: the usual changes in the vapour–liquid phase separation, changes in the type of phase diagrams (typically from type I to type V phase behaviour according to the Scott and Konynenburg classification), azeotropy, and Bancroft points. We noted that the main effect of adding a symmetric or an asymmetric surfactant to the n-heptane + perfluoromethane mixture is to stabilise the system, i.e. to decrease the two-phase (liquid–liquid) immiscibility region of the ternary diagram as the surfactant concentration is increased. This effect becomes larger as the chain length of the surfactant is increased, which is consistent with a higher number of alkyl–alkyl and perfluoroalkyl–perfluoroalkyl favourable interactions in the mixture.  相似文献   

11.
Eutectic gallium indium (EGaIn), a Ga-based liquid metal alloy holds great promise for designing next-generation core–shell nanoparticles (CSNs). A shearing-assisted ligand-stabilization method has shown promise as a synthetic method for these CSNs; however, determining the role of the ligand on stabilization demands an understanding of the surface chemistry of the ligand–nanoparticle interface. EGaIn CSNs are created and functionalized with aliphatic carboxylates of different chain length, allowing a fundamental investigation on ligand stabilization of EGaIn CSNs. Raman and diffuse reflectance Fourier transform spectroscopies (DRIFTS) confirm reaction of the ligand with the oxide shell of the EGaIn nanoparticles. Changing the length of the alkyl chain in the aliphatic carboxylates (C2–C18) may influence the size and structural stability of EGaIn CSNs, which is easily monitored using atomic force microscopy (AFM). No matter how large the carboxylate ligand, there is no obvious effect on the size of the EGaIn CSNs, except the particle size getting more uniform when coated with longer chain carboxylates. The AFM force–distance measurements are used to measure the stiffness of the carboxylate-coated EGaIn CSNs. In corroboration with DRIFTS analysis, the stiffness studies show that the alkyl chains undergo conformational changes upon compression.  相似文献   

12.
We have studied the structure of a novel crystalline surface monolayer on top of a disordered melt of the same material [poly(n-alkyl acrylate)s] using grazing incidence x-ray diffraction. The grazing incidence x-ray diffraction, surface tension, and bulk latent heat results show that side chains crystallize except the nine methylene units of the alkyl side chains closest to the polymer backbone. The partial crystallinity along with a thicker surface layer, due to the additional length of the linker group, explains why the difference between the surface order-to-disorder transition temperature and bulk melting temperature increases with a decrease in the length of the alkyl side chain.  相似文献   

13.
Self-assembled monolayers are widely used to modify the gate dielectric/semiconductor interface in organic thin-film transistors. By modifying the interaction between the molecular semiconductor and the substrate, thin-film ordering and the electronic properties of the semiconducting channel can be controlled. The modified semiconductor/dielectric properties result in macroscopically observed changes in the charge-carrier mobilities, threshold voltages, subthreshold swing and transfer characteristic hysteresis. The latter two are determined by the density of charge-trapping states at the interface. Here, we investigate the influence of the thickness of the self-assembled monolayer, via the alkyl chain length in n-alkyl phosphonic acid-based monolayers on SiO2, on the electronic properties of pentacene-based organic thin-film transistors. Rather than a monotonic increase or decrease in performance with increasing chain length, we have found that the optimum performance occurs with chains of 8–10 carbon atoms. Atomic force microscopy shows a correlation between pentacene crystalline grain size and transistor performance.  相似文献   

14.
Gold nanoparticles were prepared by two different methods. The first method was chemically grafting the particles with different lengths of alkylthiol (C6SH, C12SH and C18SH). For the second method, the Au particles were surface modified first by mercaptosuccinic acid (MSA) to render a surface with carboxylic acid groups which play a role to physically adsorb cationic surfactant in chloroform. This method was termed physical/chemical method. In the first method, the effects of alkyl chain length and dispersion solvent on the monolayer behavior of surface modified gold nanoparticles was evaluated. The gold nanoparticles prepared by 1-hexanthiol demonstrated the narrowest size distribution. Most of them showed narrower particle size distributions in chloroform than in hexane. For the physical/chemical method, the particles can spread more uniformly on the water surface which is attributed to the amphiphilic character of the particles at the air/water interface. However, the particles cannot pack closely due to the relatively weak particle-particle interaction. The effect of alkyl chain length was also assessed for the second method.  相似文献   

15.
Synchrotron x-ray and surface-tension studies of a strong polyelectrolyte (PE) in the semidilute regime (approximately 0.1 M monomer charges) with varying surfactant concentrations show that minute surfactant concentrations induce the formation of a PE-surfactant complex at the gas-solution interface. X-ray reflectivity and grazing angle x-ray diffraction show the complex PE-surfactant resides at the interface and the alkyl chains of the surfactant form a two-dimensional liquidlike monolayer. With the addition of salt (NaCl), columnar crystals with distorted-hexagonal symmetry are formed.  相似文献   

16.
In this work thermal conduction in one-dimensional(1D) chains of anharmonic oscillators are studied using computer simulation.The temperature profile,heat flux and thermal conductivity are investigated for chain length N = 100,200,400,800 and 1600.In the computer simulation anharmonicity is introduced due to Fermi-Pasta-Ulam-β(FPU-β) model.For substrate interaction,an onsite potential due to Frenkel-Kontorova(FK) model has been used.Numerical simulations demonstrate that temperature gradient scales behave as N-1 linearly with the relation J = 0.1765/N.For the thermal conductivity K,KN to N obey the linear relation of the type KN = 0.8805N.It is shown that thermal transport is dependent on phonon-phonon interaction as well as phonon-lattice interaction.The thermal conductivity increases linearly with increase inanharmonicity and predicts relation κ = 0.133 + 0.804β.It is also concluded that for higher value of the strength of the onsite potential system tends to a thermal insulator.  相似文献   

17.
本研究利用红外光谱研究不同压力下离子液体1-Methy1-3-propylimidazolium iodide([MPIM][I])与石墨烯及其氧化物的相互作用.结果表明,[MPIM][I]对压力的变化具有高敏感度,咪唑环与烷基链在0.4 GPa时产生相变化,可明显观察到吸收峰的裂解,且连续加压会导致咪唑环与烷基链的振动频率蓝移.[MPIM][I]与石墨烯作用时加压至2.5 GPa也未观测到相变化的产生,且咪唑环与烷基链的振动频率蓝移趋势也不明显;[MPIM][I]与石墨烯氧化物作用时咪唑环与烷基链的结果与添加石墨烯时几乎相同.石墨烯氧化物具有羟基、羧基、环氧基等共价键结在其表面,这些羟基会扰动[MPIM][I]中的咪唑环与烷基链,导致在常压下振动频率发生蓝移,进而表明石墨烯表面的官能基团会与离子液体产生相互作用.  相似文献   

18.
In a microemulsion system based on a mixture of nonionic and ionic surfactants the addition of alcohol instead of changing the temperature was used to tune the curvature of the surfactant interface. The influence of the addition of the short-chain alcohol 2-propanol in the system water-perchloroethylene-Marlowet IHF-2-propanol is studied using neutron spin-echo spectroscopy. In contrast to alcohols with long alkyl chains 2-propanol is no strong co-surfactant, but changes the properties of the solvents. The present contribution focuses on the bicontinuous phase in this system and a quantitative analysis of the obtained neutron spin-echo data is proposed within the theoretical framework given by Zilman and Granek for amphiphilic membranes. It turns out that, in addition to the local movements of the surfactant film, also a collective diffusional mode of the bicontinuous structure has to be taken into account. The presented approach allows to calculate the bending elastic constant k \kappa of the film. The approach is subsequently applied to follow changes of k \kappa as induced by changes of the alcohol concentration.  相似文献   

19.
张茂平  钟伟荣  艾保全 《中国物理 B》2011,20(10):100508-100508
Using nonequilibrium molecular dynamics simulations, we study the thermal conductivity of asymmetric double chains. We couple two different single chains through interchain coupling to build three kinds of asymmetric double-stranded chain system: intrachain interaction, external potential, and mass asymmetric double chains. It is reported that asymmetry is helpful in improving the thermal conductivity of the system. We first propose double-heat flux channels to explain the influence of asymmetric structures on the thermal conductivity. The phonon spectral behaviour and finite size effect are also included.  相似文献   

20.
通过界面有效吸收系数的计算及界面对腔模的反射率的影响可知,采用双面键合技术制备面发射激光器应使键合界面处于驻波场分布零点位置,同时界面厚度应该小于20 nm以使器件光学性能受界面吸收系数的影响较小.采用有限元方法分析VCSEL温度分布,结果证实薄的键合界面使VCSEL有源区温度对界面的热导率和电导率改变不敏感,而厚的键合界面将可能使有源区温度有较大地升高,给器件带来严重的不良影响.亲水键合和疏水键合的SEM照片说明疏水处理界面较薄,适合用于器件的制备.而亲水处理界面厚度>40 nm,对器件的光、热特性不利 关键词: 键合 面发射激光器 热导率 电导率  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号