首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For a convex programming problem we propose a solution method which belongs to the class of cutting-plane methods. When constructing approximate solutions to the problem, this technique concurrently approximates its feasible set and the epigraph of the objective function. Planes for cutting the iteration points are being constructed with the help of subgradients of the objective function and left-hand sides of constraints. In this connection, one can find each iteration point by solving a linear programming problem. As distinct from most other well-known cuttingplane methods, the proposed technique allows the possibility to periodically update approximating sets by dropping accumulated constraints. We substantiate the convergence of the proposed method and discuss its numerical realization.  相似文献   

2.
We consider maximising a concave function over a convex set by a simple randomised algorithm. The strength of the algorithm is that it requires only approximate function evaluations for the concave function and a weak membership oracle for the convex set. Under smoothness conditions on the function and the feasible set, we show that our algorithm computes a near-optimal point in a number of operations which is bounded by a polynomial function of all relevant input parameters and the reciprocal of the desired precision, with high probability. As an application to which the features of our algorithm are particularly useful we study two-stage stochastic programming problems. These problems have the property that evaluation of the objective function is #P-hard under appropriate assumptions on the models. Therefore, as a tool within our randomised algorithm, we devise a fully polynomial randomised approximation scheme for these function evaluations, under appropriate assumptions on the models. Moreover, we deal with smoothing the feasible set, which in two-stage stochastic programming is a polyhedron.  相似文献   

3.
An effective continuous algorithm is proposed to find approximate solutions of NP-hardmax-cut problems.The algorithm relaxes the max-cut problem into a continuous nonlinearprogramming problem by replacing n discrete constraints in the original problem with onesingle continuous constraint.A feasible direction method is designed to solve the resultingnonlinear programming problem.The method employs only the gradient evaluations ofthe objective function,and no any matrix calculations and no line searches are required.This greatly reduces the calculation cost of the method,and is suitable for the solutionof large size max-cut problems.The convergence properties of the proposed method toKKT points of the nonlinear programming are analyzed.If the solution obtained by theproposed method is a global solution of the nonlinear programming problem,the solutionwill provide an upper bound on the max-cut value.Then an approximate solution to themax-cut problem is generated from the solution of the nonlinear programming and providesa lower bound on the max-cut value.Numerical experiments and comparisons on somemax-cut test problems(small and large size)show that the proposed algorithm is efficientto get the exact solutions for all small test problems and well satisfied solutions for mostof the large size test problems with less calculation costs.  相似文献   

4.
In this paper an algorithm for solving a linearly constrained nonlinear programming problem is developed. Given a feasible point, a correction vector is computed by solving a least distance programming problem over a polyhedral cone defined in terms of the gradients of the “almost” binding constraints. Mukai's approximate scheme for computing the step size is generalized to handle the constraints. This scheme provides an estimate for the step size based on a quadratic approximation of the function. This estimate is used in conjunction with Armijo line search to calculate a new point. It is shown that each accumulation point is a Kuhn-Tucker point to a slight perturbation of the original problem. Furthermore, under suitable second order optimality conditions, it is shown that eventually only one trial is needed to compute the step size.  相似文献   

5.
We introduce a new model algorithm for solving nonlinear programming problems. No slack variables are introduced for dealing with inequality constraints. Each iteration of the method proceeds in two phases. In the first phase, feasibility of the current iterate is improved; in second phase, the objective function value is reduced in an approximate feasible set. The point that results from the second phase is compared with the current point using a nonsmooth merit function that combines feasibility and optimality. This merit function includes a penalty parameter that changes between consecutive iterations. A suitable updating procedure for this penalty parameter is included by means of which it can be increased or decreased along consecutive iterations. The conditions for feasibility improvement at the first phase and for optimality improvement at the second phase are mild, and large-scale implementation of the resulting method is possible. We prove that, under suitable conditions, which do not include regularity or existence of second derivatives, all the limit points of an infinite sequence generated by the algorithm are feasible, and that a suitable optimality measure can be made as small as desired. The algorithm is implemented and tested against the LANCELOT algorithm using a set of hard-spheres problems.  相似文献   

6.
《Optimization》2012,61(1-2):93-120
In a continuous approach we propose an efficient method for globally solving linearly constrained quadratic zero-one programming considered as a d.c. (difference of onvex functions) program. A combination of the d.c. optimization algorithm (DCA) which has a finite convergence, and the branch-and-bound scheme was studied. We use rectangular bisection in the branching procedure while the bounding one proceeded by applying d.c.algorithms from a current best feasible point (for the upper bound) and by minimizing a well tightened convex underestimation of the objective function on the current subdivided domain (for the lower bound). DCA generates a sequence of points in the vertex set of a new polytope containing the feasible domain of the problem being considered. Moreover if an iterate is integral then all following iterates are integral too.Our combined algorithm converges so quite often to an integer approximate solution.Finally, we present computational results of several test problems with up to 1800

variables which prove the efficiency of our method, in particular, for linear zero-one programming  相似文献   

7.
In this part of the two-part series of papers, algorithms for solving some variable programming (VP) problems proposed in Part I are investigated. It is demonstrated that the non-differentiability and the discontinuity of the maximum objective function, as well as the summation objective function in the VP problems constitute difficulty in finding their solutions. Based on the principle of statistical mechanics, we derive smooth functions to approximate these non-smooth objective functions with specific activated feasible sets. By transforming the minimax problem and the corresponding variable programming problems into their smooth versions we can solve the resulting problems by some efficient algorithms for smooth functions. Relevant theoretical underpinnings about the smoothing techniques are established. The algorithms, in which the minimization of the smooth functions is carried out by the standard quasi-Newton method with BFGS formula, are tested on some standard minimax and variable programming problems. The numerical results show that the smoothing techniques yield accurate optimal solutions and that the algorithms proposed are feasible and efficient.This work was supported by the RGC grant CUHK 152/96H of the Hong Kong Research Grant Council.  相似文献   

8.
区间规划是带有区间参数的规划问题,是一种更易于求解实际问题的柔性规划。它是确定性优化问题的延伸,有区间线性规划和区间非线性规划两种形式。本文讨论了目标函数是区间函数的区间非线性问题。给出了区间规划问题最优性必要条件的较简单证明方法,并利用LU最优解的概念,在一类广义凸函数-(p,r)-ρ-(η,θ)-不变凸函数定义下讨论了最优性充分条件。  相似文献   

9.
The present paper develops an algorithm for ranking the integer feasible solutions of a quadratic integer programming (QIP) problem. A linear integer programming (LIP) problem is constructed which provides bounds on the values of the objective function of the quadratic problem. The integer feasible solutions of this related integer linear programming problem are systematically scanned to rank the integer feasible solutions of the quadratic problem in non-decreasing order of the objective function values. The ranking in the QIP problem is useful in solving a nonlinear integer programming problem in which some other complicated nonlinear restrictions are imposed which cannot be included in the simple linear constraints of QIP, the objective function being still quadratic.  相似文献   

10.
This paper concerns the solution of the NP-hard max-bisection problems. NCP func-tions are employed to convert max-bisection problems into continuous nonlinear program-ming problems. Solving the resulting continuous nonlinear programming problem generatesa solution that gives an upper bound on the optimal value of the max-bisection problem.From the solution, the greedy strategy is used to generate a satisfactory approximate so-lution of the max-bisection problem. A feasible direction method without line searches isproposed to solve the resulting continuous nonlinear programming, and the convergenceof the algorithm to KKT point of the resulting problem is proved. Numerical experimentsand comparisons on well-known test problems, and on randomly generated test problemsshow that the proposed method is robust, and very efficient.  相似文献   

11.
《Optimization》2012,61(8):1283-1295
In this article we present the fundamental idea, concepts and theorems of a basic line search algorithm for solving linear programming problems which can be regarded as an extension of the simplex method. However, unlike the iteration of the simplex method from a basic point to an improved adjacent basic point via pivot operation, the basic line search algorithm, also by pivot operation, moves from a basic line which contains two basic feasible points to an improved basic line which also contains two basic feasible points whose objective values are no worse than that of the two basic feasible points on the previous basic line. The basic line search algorithm may skip some adjacent vertices so that it converges to an optimal solution faster than the simplex method. For example, for a 2-dimensional problem, the basic line search algorithm can find an optimal solution with only one iteration.  相似文献   

12.
Several linear regression estimators are presented, which approximate the distribution function of the m-dimensional normal distribution, or the distribution function along a line. These regression estimators are quadratic functions, or simple functions of quadratic functions and can be applied in numerical problems, arising during optimization of stochastic programming problems. A root finding procedure is developed, that can be used to find the intersection of a line and the border of the feasible set. Directional derivatives and gradient of the normal distribution can be computed. Some numerical results are also presented.  相似文献   

13.
本文给出了一类线性约束下不可微量优化问题的可行下降方法,这类问题的目标函数是凸函数和可微函数的合成函数,算法通过解系列二次规划寻找可行下降方向,新的迭代点由不精确线搜索产生,在较弱的条件下,我们证明了算法的全局收敛性  相似文献   

14.
In this study, we propose an algorithm for solving a minimax problem over a polyhedral set defined in terms of a system of linear inequalities. At each iteration a direction is found by solving a quadratic programming problem and then a suitable step size along that direction is taken through an extension of Armijo's approximate line search technique. We show that each accumulation point is a Kuhn-Tucker solution and give a condition that guarantees convergence of the whole sequence of iterations. Through the use of an exact penalty function, the algorithm can be used for solving constrained nonlinear programming. In this case, our algorithm resembles that of Han, but differs from it both in the direction-finding and the line search steps.  相似文献   

15.
Inexact Restoration methods have been introduced for solving nonlinear programming problems. Each iteration is composed of two phases. The first one reduces a measure of infeasibility, while in the second one the objective function value is reduced in a tangential approximation of the feasible set. The point obtained from the second phase is compared with the current point either by means of a merit function or by using a filter criterion. A comparative numerical study about these criteria by using a family of Hard-Spheres Problems is presented.  相似文献   

16.
一种具有非线性约束线性规划全局优化算法   总被引:2,自引:0,他引:2  
本文提出了一种新的适用于处理非线性约束下线性规划问题的全局优化算法。该算法通过构造子问题来寻找优于当前局部最优解的可行解。该子问题可通过模拟退火算法来解决。通过求解一系列的子问题,当前最优解被不断地更新,最终求得全局最优解。最后,本算法应用于几个典型例题,并与罚函数法相比较,数值结果表明该算法是可行的,有效的。  相似文献   

17.
A new heuristic approach is presented for scheduling economic lots in a multi-product single-machine environment. Given a pre-defined master sequence of product setups, an integer linear programming formulation is developed which finds an optimal subsequence and optimal economic lots. The model takes explicit account of initial inventories, setup times and allows setups to be scheduled at arbitrary epochs in continuous time, rather than restricting setups to a discrete time grid. We approximate the objective function of the model and solve to obtain an optimal capacity feasible schedule for the approximate objective. The approach was tested on a set of randomly generated problems, generating solutions that are on average 2.5% above a lower bound on the optimal cost. We also extend the approach to allow shortages.  相似文献   

18.
In this paper, an algorithm of barrier objective penalty function for inequality constrained optimization is studied and a conception–the stability of barrier objective penalty function is presented. It is proved that an approximate optimal solution may be obtained by solving a barrier objective penalty function for inequality constrained optimization problem when the barrier objective penalty function is stable. Under some conditions, the stability of barrier objective penalty function is proved for convex programming. Specially, the logarithmic barrier function of convex programming is stable. Based on the barrier objective penalty function, an algorithm is developed for finding an approximate optimal solution to an inequality constrained optimization problem and its convergence is also proved under some conditions. Finally, numerical experiments show that the barrier objective penalty function algorithm has better convergence than the classical barrier function algorithm.  相似文献   

19.
In this paper, by using the notion of strong subdifferential and epsilon-subdifferential, necessary optimality conditions are established firstly for an epsilon-weak Pareto minimal point and an epsilon-proper Pareto minimal point of a vector optimization problem, where its objective function and constraint set are denoted by using differences of two vector-valued maps, respectively. Then, by using the concept of approximate pseudo-dissipativity, sufficient optimality conditions are obtained. As an application of these results, sufficient and necessary optimality conditions are also given for an epsilon-weak Pareto minimal point and an epsilon-proper Pareto minimal point of a vector fractional mathematical programming.  相似文献   

20.
In this paper, we present a sequential quadratically constrained quadratic programming (SQCQP) norm-relaxed algorithm of strongly sub-feasible directions for the solution of inequality constrained optimization problems. By introducing a new unified line search and making use of the idea of strongly sub-feasible direction method, the proposed algorithm can well combine the phase of finding a feasible point (by finite iterations) and the phase of a feasible descent norm-relaxed SQCQP algorithm. Moreover, the former phase can preserve the “sub-feasibility” of the current iteration, and control the increase of the objective function. At each iteration, only a consistent convex quadratically constrained quadratic programming problem needs to be solved to obtain a search direction. Without any other correctional directions, the global, superlinear and a certain quadratic convergence (which is between 1-step and 2-step quadratic convergence) properties are proved under reasonable assumptions. Finally, some preliminary numerical results show that the proposed algorithm is also encouraging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号