首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Based on the well-known Durbin method, an efficient numerical method was developed for the inversion of the two-sided Laplace transform. The accuracy of the method was verified using examples. As an application of the method, transient elastic waves propagating in a two-layered piezoelectric medium subjected to anti-plane concentrated loading and in-plane electric displacement loading were investigated. One-sided and two-sided Laplace transforms were applied to determine the shear stresses and electric displacements in the double Laplace transform domain. Subsequently, the Durbin method for one-sided Laplace transform inversion and the extended Durbin method for two-sided Laplace transform inversion were used to implement the numerical inversions. Additionally, the numerical results of the transient stresses and electric displacements were evaluated and discussed. It showed that the arrival time of transient waves satisfies physical phenomena, and the transient solution oscillates near the static solution and rapidly approximates the static solution.  相似文献   

3.
This paper presents a novel wideband fast multipole boundary element approach to 3D half-space/planesymmetric acoustic wave problems.The half-space fundamental solution is employed in the boundary integral equations so that the tree structure required in the fast multipole algorithm is constructed for the boundary elements in the real domain only.Moreover,a set of symmetric relations between the multipole expansion coefficients of the real and image domains are derived,and the half-space fundamental solution is modified for the purpose of applying such relations to avoid calculating,translating and saving the multipole/local expansion coefficients of the image domain.The wideband adaptive multilevel fast multipole algorithm associated with the iterative solver GMRES is employed so that the present method is accurate and efficient for both lowand high-frequency acoustic wave problems.As for exterior acoustic problems,the Burton-Miller method is adopted to tackle the fictitious eigenfrequency problem involved in the conventional boundary integral equation method.Details on the implementation of the present method are described,and numerical examples are given to demonstrate its accuracy and efficiency.  相似文献   

4.
In this paper, the authors treat the free‐surface waves generated by a moving disturbance with a constant speed in water of finite and constant depth. Specifically, the case when the disturbance is moving with the critical speed is investigated. The water is assumed inviscid and its motion irrotational. The surface tension is neglected. It is well‐known that the linear theory breaks down when a disturbance is moving with the critical speed. As a remedy to overcome the invalid linear theory, approximate non‐linear theories have been applied with success in the past, i.e. Boussinesq and Korteweg de Vries equations, for example. In the present paper, the authors describe a finite element method applied to the non‐linear water‐wave problems in two dimensions. The present numerical method solves the exact non‐linear formulation in the scope of potential theory without any additional assumptions on the magnitude of the disturbances. The present numerical results are compared with those obtained by other approximate non‐linear theories. Also presented are the discussions on the validity of the existing approximate theories applied to two types of the disturbances, i.e. the bottom bump and the pressure patch on the free‐surface at the critical speed. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

5.
A finite difference method is developed for the numerical modelling of the 2-D and 3-D unsteady potential flow generated by transient disturbances on the free surface, on which the nonlinear boundary conditions are fully satisfied. The unknown function is computed with an iteration scheme processing in a transformed time-invariant space. After the velocity is calculated, the location of the free surface is renewed and so is the value of velocity on it. The boundary-value problem of the governing equation is then solved at the next time step. The present method incorporates the FFT. Consequently, a tri-diagonal equation system is obtained which could be readily solved. The feasibility of this method has been demonstrated by 2-D and 3-D examples corresponding to different initial disturbances. This work is supported by the science foundation of Academia Sinica. The paper had been accepted by the XVIth International Congress of IUTAM, Lyngby, Denmark, August, 1984.  相似文献   

6.
7.
8.
9.
10.
A type of numerical scheme for 2D and 3D steady non-linear water wave problems is described. It is based on the finite process method and is insensitive to initial solutions. The relationship between the finite process method and iterative techniques is discussed. As a numerical example the flow past a submerged vortex is solved and the results are compared with those of other authors.  相似文献   

11.
Frequently the determination of material characteristic functions, such as the molecular mass distribution of a polymeric sample or the relaxation spectrum of a viscoelastic fluid, leads to an ill-posed problem. When Tikhonov regularization is applied to such a problem the problem of an appropriate choice of the regularization parameter arises. Well-known methods to determine this parameter, such as the discrepancy principle, and a method based on the minimization of the predictive mean-square signal error are compared with a self-consistence method. Monte Carlo simulations have been carried out for the determination of the relaxation spectrum from small amplitude oscillatory shear flow data. The self-consistence method has proven to be much more robust and reliable.  相似文献   

12.
Summary An approximate solution of heat-conduction problems can be obtained by the strip method. The method consists of an application of the finite-difference approximation in one physical coordinate and an analytic solution in other coordinates. A simple illustrative example is given and the result is compared with that obtained by the exact solution. By application of this method, an approximate solution is given for the steady heat conduction through a rectangular parallel composite wall with different rates of heat generation.  相似文献   

13.
A new combinative method of boundary-type finite elements and boundary solutions is presented to study wave diffraction-refraction and harbour oscillation problems. The numerical model is based on the mild-slope equation. The key feature of this method is that the discretized matrix equation can be formulated only by the calculation of a line integral, since the interpolation equation which satisfies the governing equation in each element is used. The numerical solutions are compared with existing analytical, experimental, observed and other numerical results. The present method is shown to be an effective and accurate method for water surface wave problems.  相似文献   

14.
The boundary-type finite element method has been investigated and applied to the Helmholz and mild-slope equations. Four types of interpolation function are examined based on trigonometric function series. Three-node triangular, four-node quadrilateral, six-node triangular and eight-node quadrilateral elements are tested; these are all non-conforming elements. Three types of numerical example show that the three-node triangular and four-node quadrilateral elements are useful for practical analysis.  相似文献   

15.
This paper is concerned with the generalized piezothermoelastic problems using finite element method (FEM). The governing equations are solved directly in time-domain to minimize precision losses caused during Laplace transformation. The results reveal that the heat wave propagating in medium at a finite speed can be described. Breakdown of a linear temperature drop at the heat wave front which cannot be described by Fourier’s law is observed. Furthermore, the high concentration of stress and electric intensity at the heat wave front due to the high temperature gradient has been newly found.  相似文献   

16.
17.
18.
The paper presents the improved element-freeGalerkin(IEFG) method for three-dimensional wave propagation.The improved moving least-squares(IMLS) approximation is employed to construct the shape function,whichuses an orthogonal function system with a weight function asthe basis function.Compared with the conventional movingleast-squares(MLS) approximation,the algebraic equationsystem in the IMLS approximation is not ill-conditioned,andcan be solved directly without deriving the inverse matrix.Because there are fewer coefficients in the IMLS than in theMLS approximation,fewer nodes are selected in the IEFGmethod than in the element-free Galerkin method.Thus,theIEFG method has a higher computing speed.In the IEFGmethod,the Galerkin weak form is employed to obtain a discretized system equation,and the penalty method is appliedto impose the essential boundary condition.The traditionaldifference method for two-point boundary value problems isselected for the time discretization.As the wave equationsand the boundary-initial conditions depend on time,the scaling parameter,number of nodes and the time step length areconsidered for the convergence study.  相似文献   

19.
Transformation method provides an efficient way to control wave propagation by materials.The transformed relations for field and material during a transformation are essential to fulfill this method.We propose a systematic method to derive the transformed relations for a general physic process,the constraint conditions are obtained by considering geometrical and physical constraint during a mapping. The proposed method is applied to Navier's equation for elastodynamics,Helmholtz's equation for acoustic wave and Maxwell's equation for electromagnetic wave,the corresponding transformed relations are derived,which can be used in the framework of transformation method for wave control.We show that contrary to electromagnetic wave,the transformed relations are not uniquely determined for elastic wave and acoustic wave,so we have a freedom to choose them differently.Using the obtained transformed relations,we also provide some examples for device design,a concentrator for elastic wave,devices for illusion acoustic and illusion optics are conceived and validated by numerical simulations.  相似文献   

20.
Owing to significant mathematical difficulties arising when solving dynamic problems of elasticity, ever more attention is paid to the study of types of boundary value problems, boundary shapes, and additional assumptions (for example, such as symmetry) for which, in the statement of the problem in potentials, not only the equations of motion lead to separate scalar wave equations but also the boundary conditions split into separate conditions for each of the potentials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号