首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pb(18‐crown‐6)Cl2 and Hg(18‐crown‐6)I2 are obtained as transparent colourless crystals of needle and hexagonal shape, respectively, by isothermal evaporation of their dichloromethane solutions. Pb(18‐crown‐6)Cl2 crystallizes with the trigonal crystal system [ , no. 148, a = b = 1176.3(2), c = 1191.8(3) pm, V = 1428.2(5) 106·pm3, Z = 3] whereas Hg(18‐crown‐6)I2 crystallizes with the orthorhombic crystal system (Pnma, no. 62, a = 1613.9(2) pm, b = 2822.2(5) pm, c = 841.3(1) pm, V = 3832(1)106·pm3, Z = 8). Both compounds are characterized by linear MX2 (HgI2 or PbCl2) molecular units which are encrypted by the crown ether. In both cases, the divalent metal ion resides in the middle of the crown ether resulting in a hexagonal bipyramidal coordination environment for the metal cations. The molecular symmetry comes close to D3d. Hg(18‐crown‐6)I2 and Pb(18‐crown‐6)Cl2 differ in the way the single MX2@18‐crown‐6 units are packed. Whereas the Hg(18‐crown‐6)I2 molecules are arranged in a (distorted) cubic closest packing, the Pb(18‐crown‐6)Cl2 molecules adopt a hexagonal closest packing.  相似文献   

2.
The lamellar coordination polymer [(CuSCN)2(μ‐1,10DT18C6)] (1,10DT18C6 = 1,10‐dithia‐18‐crown‐6), in which staircase‐like CuSCN double chains are bridged by thiacrown ether ligands, may be prepared in two triclinic modifications 1 a and 1 b by reaction of CuSCN with 1,10DT18C6 in respectively benzonitrile or water. Performing the reaction in acetonitrile in the presence of an equimolar quantity of KSCN leads, in contrast, to formation of the K+ ligating 2‐dimensional thiocyanatocuprate(I) net [{Cu2(SCN)3}] of 2 , half of whose Cu(I) atoms are connected by 1,10DT18C6 macrocycles. The potassium cations in [{K(CH3CN)}{Cu2(SCN)3(μ‐1,10DT18C6)}] ( 2 ) are coordinated by all six potential donor atoms of a single thiacrown ether in addition to a thiocyanate S and an acetonitrile N atom. Under similar conditions, reaction of CuI, NaSCN and 1,10DT18C6 affords [{Na(CH3CN)2}{Cu4I4(SCN)(μ‐1,10DT18C6)}] ( 3 ), which contains distorted Cu4I4 cubes as characteristic molecular building units. These are bridged by thiocyanate and thiacrown ether ligands into corrugated Na+ ligating sheets. In the presence of divalent Ba2+ cations, charge compensation requirements lead to formation of discrete [Cu(SCN)3(1,10DT18C6‐κS)]2– anions in [Ba{Cu(SCN)3(1,10DT18C6‐κS)}] ( 4 ).  相似文献   

3.
The structure of the title compound [systematic name: bis(adamantan‐1‐aminium) tetrachloridozincate(II)–1,4,7,10,13,16‐hexaoxacyclooctadecane–water (1/1/1)], (C10H18N)2[ZnCl4]·C12H24O6·H2O, consists of supramolecular rotator–stator assemblies and ribbons of hydrogen bonds parallel to [010]. The assemblies are composed of one protonated adamantan‐1‐aminium cation and one crown ether molecule (1,4,7,10,13,16‐hexaoxacyclooctadecane) to give an overall [(C10H18N)(18‐crown‐6)]+ cation. The –NH3+ group of the cation nests in the crown and links to the crown‐ether O atoms through N—H...O hydrogen bonds. The 18‐crown‐6 ring adopts a pseudo‐C3v conformation. The second adamantan‐1‐aminium forms part of ribbons of adamantan‐1‐aminium–water–tetrachloridozincate units which are interconnected by O—H...Cl, N—H...O and N—H...Cl hydrogen bonds via three different continuous rings with R54(12), R43(10) and R33(8) motifs.  相似文献   

4.
Summary: A series of novel, thermo‐sensitive copolymers with different molar ratios of N‐isopropylacrylamide (NIPAM) and hydrophobic cis‐dibenzo‐18‐crown‐6‐diacrylamide (cis‐DBCAm) were prepared via free‐radical copolymerization. cis‐DBCAm with polymerizable end groups was successfully synthesized by reacting the corresponding amino crown ether with acryloyl chloride. The copolymers were characterized by FT‐IR and elemental analysis, and the thermo‐sensitivities of the copolymers were evaluated by measuring their lower critical solution temperatures (LCSTs) in the absence or presence of various metal ions. The results indicated that incorporation of cis‐DBCAm lowered LCSTs, and that the LCSTs of the copolymers decreased with the increase in cis‐DBCAm content in the copolymers. When the cavities of the crown ether units captured either K+ or Cs+ ions, the LCST of the respective copolymer–metal ion complex was further decreased, whereas the capture of Na+ or Li+ ions did not have a significant influence on the LCSTs of the copolymers.

Incorporation of cis‐DBCAm into PNIPAM resulted in a lower LCST. The LCST was decreased more when the cavities of the crown ether units captured K+ ions.  相似文献   


5.
5‐Azido‐2‐methoxy‐1,3‐xylyl‐18‐crown‐5 has been prepared by reacting p‐toluenesulfonyl azide with the carbanion generated from the reaction of 5‐bromo‐2‐methoxy‐1,3‐xylyl‐18‐crown‐5 with n‐butyl lithium. The asymmetric N3 stretch of this product has been observed as a single band at 2110 cm?1 in dichloromethane solution. Addition of solid NaSCN, KSCN and CsSCN shifts this band to 2115, 2113 and 2112 cm?1, respectively. Computational studies of this azide at the B3LYP‐6‐31G* level in the presence and absence of Na+ predicted these bands to be at 2173 cm?1 and 2184 cm?1. For the salt‐containing solutions, additional bands were observed at 2066 cm?1, 2056 cm?1 and 2055 cm?1, respectively, which are in the range expected for CN stretches. The X‐ray structure of this azide has been determined. The terminal and internal N? N bond lengths were found to be 1.127(2) and 1.245(2) Δ, respectively, which is the usual pattern for aromatic azides. The crown ether is looped over the face of the aromatic ring resulting in an angle of 38.94° between the plane defined by the aromatic ring and that defined by the five ring oxygen atoms. In addition, the CH3 group is rotated out of the plane of the phenyl ring with C1‐C18‐O181‐C182 and C17‐C18‐O181‐C182 dihedral angles of 93.81(14)° and ‐90.54(14)°, respectively.  相似文献   

6.
In (1,4,7,10,13,16‐hexaoxacyclooctadecane)rubidium hexachloridoantimonate(V), [Rb(C12H24O6)][SbCl6], (1), and its isomorphous caesium {(1,4,7,10,13,16‐hexaoxacyclooctadecane)caesium hexachloridoantimonate(V), [Cs(C12H24O6)][SbCl6]}, (2), and ammonium {ammonium hexachloridoantimonate(V)–1,4,7,10,13,16‐hexaoxacyclooctadecane (1/1), (NH4)[SbCl6]·C12H24O6}, (3), analogues, the hexachloridoantimonate(V) anions and 18‐crown‐6 molecules reside across axes passing through the Sb atoms and the centroids of the 18‐crown‐6 groups, both of which coincide with centres of inversion. The Rb+ [in (1)], Cs+ [in (2)] and NH4+ [in (3)] cations are situated inside the cavity of the 18‐crown‐6 ring; they are situated on axes and are equally disordered about centres of inversion, deviating from the centroid of the 18‐crown‐6 molecule by 0.4808 (13), 0.9344 (7) and 0.515 (8) Å, respectively. Interaction of the ammonium cation and the 18‐crown‐6 group is supported by three equivalent hydrogen bonds [N...O = 2.928 (3) Å and N—H...O = 162°]. The centrosymmetric structure of [Cs(18‐crown‐6)]+, with the large Cs+ cation approaching the centre of the ligand cavity, is unprecedented and accompanied by unusually short Cs—O bonds [2.939 (2) and 3.091 (2) Å]. For all three compounds, the [M(18‐crown‐6)]+ cations and [SbCl6] anions afford linear stacks along the c axis, with the cationic complexes embedded between pairs of inversion‐related anions.  相似文献   

7.
5‐Diphenylphosphino‐2‐hydroxy‐1,3‐xylyl‐18‐crown‐5 has been synthesized from 5‐bromo‐2‐hydroxy‐18‐crown‐5 by reacting it in sequence at low temperature with n‐butyl lithium and methyl diphenylphosphonite. The phosphorous donor properties of this phenol phosphine (OH derivative) and the corresponding phenoxide (O? derivative) have been studied in the presence and absence of alkali metal ions by determining the frequencies of the A1 ν(CO) bands of Ni(CO)3L complexes. For the OH and O? derivatives, the latter generated by addition of CsOH to the former, the ν(CO) bands are observed at 2067.6 and 2063.4 cm?1, respectively, providing the trend predicted by Hammett parameters for OH and O? substituents. Addition of Na+ or K+ to the OH derivative has little effect on this stretching frequency, but the former ion shifts the O? derivative band to 2067.7 cm?1 A solid state structure has been obtained of the OH derivative, and two independent molecules were found in the unit cell. Both have a single water molecule hydrogen bonded to two across‐ring oxygen atoms and the phenol hydrogen. The crown ether ring has the usual gauche and anti arrangements for the C‐C and C? O bonds.  相似文献   

8.
The compound [Rb(18‐crown‐6)]2Rb2[Sn9](en)1.5 ( 1 ) was synthesized from an alloy of formal composition K2Rb2Sn9 by dissolving in ethylenediamine (en) followed by the addition of 18‐crown‐6 and toluene. 1 crystallizes in the monoclinic space group P21/n with a = 10.557(2), b = 25.837(5), c = 20.855(4)Å, β = 102.39°, and Z = 4. The structure consists of [Sn9]4— cluster anions, which are connected via Rb atoms to infinite [Rb4Sn9] layers. The layers of binary composition are separated by the crown ether molecules. The crown ether molecules are bound by one side via the Rb atoms to the [Sn9]4— anions. The other side, which is turned away from the Rb atoms, shows only weak van der Waals interactions to the crown ether molecules of the next layer. Comparison with other compounds of similar composition shows, that the variation of the alkali metals and the complexing organic molecules leads to the low dimensional arrangement of the clusters.  相似文献   

9.
Mixtures of 4‐carboxypyridinium perchlorate or 4‐carboxypyridinium tetrafluoroborate and 18‐crown‐6 (1,4,7,10,13,16‐hexaoxacyclooctadecane) in ethanol and water solution yielded the title supramolecular salts, C6H6NO2+·ClO4·C12H24O6·2H2O and C6H6NO2+·BF4·C12H24O6·2H2O. Based on their similar crystal symmetries, unit cells and supramolecular assemblies, the salts are essentially isostructural. The asymmetric unit in each structure includes one protonated isonicotinic acid cation and one crown ether molecule, which together give a [(C6H6NO2)(18‐crown‐6)]+ supramolecular cation. N—H...O hydrogen bonds between the protonated N atoms and a single O atom of each crown ether result in the 4‐carboxypyridinium cations `perching' on the 18‐crown‐6 molecules. Further hydrogen‐bonding interactions involving the supramolecular cation and both water molecules form a one‐dimensional zigzag chain that propagates along the crystallographic c direction. O—H...O or O—H...F hydrogen bonds between one of the water molecules and the anions fix the anion positions as pendant upon this chain, without further increasing the dimensionality of the supramolecular network.  相似文献   

10.
The reaction of propane‐1,3‐diamine hydrochloride, 18‐crown‐6 and zinc(II) chloride in methanol solution yields the title complex salt [systematic name: propane‐1,3‐diaminium tetrachloridozincate(II)–1,4,7,10,13,16‐hexaoxacyclooctadecane (1/1)], (C3H12N2)[ZnCl4]·C12H24O6, with an unusual supramolecular structure. The diprotonated propane‐1,3‐diaminium cation forms an unexpected 1:1 supramolecular rotator–stator complex with the crown ether, viz. [C3H12N2(18‐crown‐6)]2+, in which one of the –NH3+ substituents nests in the crown and interacts through N—H...O hydrogen bonding. The other –NH3+ group interacts with the [ZnCl4]2− anion via N—H...Cl hydrogen bonding, forming cation–crown–anion ribbons parallel to [010].  相似文献   

11.
The mol­ecule of the title compound {systematic name: di‐μ‐sulfido‐bis[di­aqua(1,4,7,10,13,16‐hexaoxa­cyclo­octade­cane‐κ6O)barium(II)] bis­[1,2‐benzisothiazol‐3(2H)‐one 1,1‐dioxide]}, [Ba2S2(C12H24O6)2(H2O)4](C7H5NO3S)2, lies on an inversion centre. The BaII atom encapsulated by the 18‐crown‐6 ring is coordinated by the six O atoms of the crown, two water O atoms and two bridging S atoms. The four‐membered ring composed of the BaII atoms and the bridging S atoms makes a dihedral angle of 67.1 (1)° with the crown‐ether ring. The aromatic ring system of the saccharin moiety is essentially planar. The packing is built up from layers of the mol­ecules and is stabilized by three intermolecular O—H?O hydrogen bonds.  相似文献   

12.
Selectivity of electromembrane extractions (EMEs) was fine‐tuned by modifications of supported liquid membrane (SLM) composition using additions of various 18‐crown‐6 ethers into 1‐ethyl‐2‐nitrobenzene. Gradually increased transfer of K+, the cation that perfectly fits the cavity of 18‐crown‐6 ethers, was observed for EMEs across SLMs modified with increasing concentrations of 18‐crown‐6 ethers. A SLM containing 1% w/v of dibenzo‐18‐crown‐6 in 1‐ethyl‐2‐nitrobenzene exhibited excellent selectivity for EMEs of K+. The established host–guest interactions between crown ether cavities in the SLM and potassium ions in donor solution ensured their almost exhaustive transfer into acceptor solution (extraction recovery ~92%) within 30 min of EME at 50 V. Other inorganic cations were not transferred across the SLM (Ca2+ and Mg2+) or were transferred negligibly (NH4+, Na+; extraction recovery < 2%) and had only subtle effect on EMEs of K+. The high selectivity of the tailor‐made SLM holds a great promise for future applications in EMEs since the range of similar selective modifiers is very broad and may be applied in various fields of analytical chemistry.  相似文献   

13.
In the structure of the complex of dibenzo‐18‐crown‐6 [systematic name: 2,5,8,15,18,21‐hexaoxatricyclo[20.4.0.09,14]hexacosa‐1(26),9,11,13,22,24‐hexaene] with 4‐methoxyanilinium tetrafluoroborate, C7H10NO+·BF4·C20H24O6, the protonated 4‐methoxyanilinium (MB‐NH3+) cation forms a 1:1 supramolecular rotator–stator complex with the dibenzo‐18‐crown‐6 molecule via N—H...O hydrogen bonds. The MB‐NH3+ group is attached from the convex side of the bowl‐shaped crown, in contrast with similar ammonium cations that nest in the curvature of the bowl. The cations are associated via C—H...π interactions, while the cations and anions are linked by weak C—H...F hydrogen bonds, forming cation–crown–anion chains parallel to [011].  相似文献   

14.
In the title compound [systematic name: tri­aqua(1,4,7,10,13,16‐hexaoxa­cyclo­octa­decane‐κ6O)(2‐nitro­phenolato‐κO)­barium(II)–aqua(1,4,7,10,13,16‐hexaoxa­cyclo­octa­decane‐κ6O)‐ bis(2‐nitro­phenolato‐κ2O,O′)­barium(II)–2‐nitro­phenolate (1/1/1)], [Ba(C12H24O6)(C6H4NO3)(H2O)3][Ba(C12H24O6)(C6H4NO3)2(H2O)](C6H4NO3), the two BaII atoms encapsulated by the 18‐crown‐6 rings have different coordinations. Although both BaII atoms are coordinated to the six O atoms of the crowns, in the neutral moiety, the BaII atom is coordinated to one terminal O atom from a water mol­ecule, two phenolate O atoms and two nitro‐group O atoms, while in the cationic moiety, the BaII atom is coordinated to three terminal O atoms from water mol­ecules and one phenolate O atom. Both the crowns are eclipsed and translated along the b direction. In the asymmetric unit, the three components are interconnected by four O—H?O interactions. The packing is stabilized by two intermolecular C—H?O interactions and by one O—H?O interaction.  相似文献   

15.
A poly(dibenzo‐18‐crown‐6) was used as a new solid‐phase extraction material for the selective enrichment of phosphopeptides. Isolation of phosphopeptides was achieved based on specific ionic interactions between poly(dibenzo‐18‐crown‐6) and the phosphate group of phosphopeptides. Thus, a method was developed and optimized, including loading, washing and elution steps, for the selective enrichment of phosphopeptides. To assess this potential, tryptic digest of three proteins (α‐ casein, β‐casein and ovalbumin) was applied on poly(dibenzo‐18‐crown‐6). The nonspecific products were removed by centrifugation and washing. The spectrometric analysis was performed using matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry. Highly selective enrichment of both mono‐ and multiphosphorylated peptides was achieved using poly(dibenzo‐18‐crown‐6) as solid‐phase extraction material with minimum interference from nonspecific compounds. Furthermore, evaluation of the efficiency of the poly(dibenzo‐18‐crown‐6) was performed by applying the digest of egg white. Finally, quantum mechanical calculations were performed to calculate the binding energies to predict the affinity between poly(dibenzo‐18‐crown‐6) and various ligands. The newly identified solid‐phase extraction material was found to be a highly efficient tool for phosphopeptide recovery from tryptic digest of proteins.  相似文献   

16.
The novel PtII–dibenzo‐18‐crown‐6 (DB18C6) title complex, μ‐[tetrakis­(thio­cyanato‐S)­platinum(II)]‐N:N′‐bis{[2,5,8,­15,18,21‐hexa­oxa­tri­cyclo­[20.4.0.19,14]­hexa­cosa‐1(22),9(14),10,12,23,25‐hexaene‐κ6O]­potassium(I)}, [K(C20H24O6)]2[Pt(SCN)4], has been isolated and characterized by X‐ray diffraction analysis. The structure analysis shows that the complex displays a quasi‐one‐dimensional infinite chain of two [K(DB18C6)]+ complex cations and a [Pt(SCN)4]2? anion, bridged by K+?π interactions between adjacent [K(DB18C6)]+ units.  相似文献   

17.
Red shiny crystals of [Rb(dibenzopyridino‐18‐crown‐6)2]2(I3)(I5) were obtained from a dichloromethane/ethanol solution of RbI, I2 and dibenzopyridino‐18‐crown‐6. Triclinic, , a = 1494.3(1), b = 1534.1(1), c = 2412.9(2) pm, α = 76.95(1), β = 83.58(1), γ = 68.67(1)°, V = 5016.7(7) 106·pm3, Z = 2. The crystal structure consists of [Rb(dbp18c6)2]+ cations leaving suitable three‐dimensional channels for the linear I3 and V‐shaped I5 anions which are isolated from each other.  相似文献   

18.
Alkali‐isocyanoacetates. Synthesis and Structure of [K(18‐crown‐6)](O2CCH2NC) The alkali isocyanoacetates M+[O2CCH2NC]? (M = Li,Na,K,Cs) ( 1a ‐ d ) are synthesized by reaction of ethyl isocyanoacetate with the respective alkali hydroxides in ethanol and characterized by IR, NMR (1H, 13C), and mass spectrometry (FAB). In alcoholic solution as well as in the gas phase ion pairs and higher aggregated species are observed. In contrast, [K(18‐crown‐6)][O2CCH2NC] ( 2 ) which is obtained from 1c and 18‐crown‐6, turns out to be a 1:1 electrolyte in solution (acetone); in the solid, the isocyanoacetate anion binds to K+ via the two carboxylate oxygen atoms resulting in an O8‐coordinated metal atom.  相似文献   

19.
The λ6Si‐silicate [K(18‐crown‐6)]2[Si(NCO)6] ( 10 ) was synthesized by treatment of Si(NCO)4 with KNCO in the presence of 18‐crown‐6. Compound 10 (SiN6 skeleton) is the first example of a hexa(cyanato‐N)silicate. It was characterized by solid‐state and solution NMR spectroscopy, and the acetonitrile solvate 10· 2CH3CN was studied by single‐crystal X‐ray diffraction. To differentiate between the two isomeric [Si(NCO)6]2? and [Si(OCN)6]2? dianions, computational studies were performed.  相似文献   

20.
New Polyiodides of Cesium containing Double and Triple Decker Cations, [Cs(benzo‐18‐crown‐6)2]Ix and [Cs2(benzo‐18‐crown‐6)3](Ix)2 (x = 3, 5) [Cs(b18c6)2]Ix (x = 3 (1) , 5 (3) ) and [Cs2(b18c6)3](Ix)2 (x = 3 (2) , 5 (4) ) (b18c6 = benzo‐18‐crown‐6) have been synthesized by the reaction of benzo‐18‐crown‐6 (C16H24O6), cesium iodide (CsI) and iodine (I2) in acetonitrile ( 1 ), ethanol/dichloromethane ( 2 , 4 ) and 2‐methoxyethanol ( 3 ). Their crystal structures were determined on the basis of single crystal X‐ray data {( 1 ): monoclinic, C2/c, Z = 4, a = 2048.8(5), b = 1329.5(5), c = 1588.7(5) pm, β = 110.23(1)°; ( 2 ): monoclinic, C2/c, Z = 4, a = 2296.0(1), b = 2092.7(1), c = 1373.6(1) pm, β = 100.21(1)°; ( 3 ): monoclinic, P21/n, Z = 4, a = 1586.3(1), b = 1745.5(1), c = 1608.6(1) pm, β = 92.37(1)°; ( 4 ): triclinic, , Z = 2, a = 1241.7(1), b = 1539.8(2), c = 1938.4(2) pm, α = 91.15(1), β = 100.53(1), γ = 95.26(1)°}. As expected, double decker cations centered by Cs atoms, [Cs(b18c6)2]+, are found in the structures of ( 1 ) and ( 3 ). In contrast, the triple decker cation found in ( 2 ) and ( 4 ) is less common. The triiodide anions of ( 1 ) and ( 2 ) can be regarded as normal and the chain‐type pentaiodide anions of ( 3 ) and ( 4 ) fall into the known systematic sequence of these anions. The differences in the connectivity of the crystallographically independent I5? anions in ( 4 ) are surprising with respect to the fact that, so far, independent pentaiodide anions do not show variations in their scheme of connectivity within one crystal structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号