首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
The alignment behaviour of triphenylene‐based compounds possessing fluoroalkylated and alkyl side chains was investigated for the hexagonal columnar (Colh) mesophase on polyimide‐, cetyltrimethylammonium bromide (CTAB)‐, and indium tin oxide‐coated glass substrates by polarizing optical microscopy. It was found that 2,6,10‐trinonyloxy‐3,7,11‐tris(1H,1H,2H,2H,3H,3H‐perfluorononyloxy)triphenylene and 2,6,11‐trinonyloxy‐3,7,10‐tris(1H,1H,2H,2H,3H,3H‐perfluorononyloxy)triphenylene exhibit spontaneous homeotropic alignment on these substrates. On the other hand, it was found that 2,6,10‐triheptyloxy‐3,7,11‐tris(1H,1H,2H,2H,3H,3H‐perfluoroheptyloxy)triphenylene, 2,6,11‐triheptyloxy‐3,7,10‐tris(1H,1H,2H,2H,3H,3H‐perfluoroheptyloxy)triphenylene, 2,6,10‐trihexyloxy‐3,7,11‐tris(1H,1H,2H,2H,3H,3H‐perfluorohexyloxy)triphenylene, 2,6,11‐trihexyloxy‐3,7,10‐tris(1H,1H,2H,2H,3H,3H‐perfluorohexyloxy)triphenylene, 2,6,10‐tributyloxy‐3,7,11‐tris(1H,1H,2H,2H,3H,3H‐perfluorobutyloxy)triphenylene and 2,6,11‐tributyloxy‐3,7,10‐tris(1H,1H,2H,2H,3H,3H‐perfluorobutyloxy)triphenylene do not show such spontaneous homeotropic alignment on these substrates. These results indicate that the spontaneous homeotropic alignment of the Colh phase could be easily attained by the introduction of an appropriate length of the fluoromethylene chains in the peripheral parts of discogens. Therefore, it is suggested that the balance between the hydrocarbon part including the triphenylene core and the fluoroalkyl part determines the alignment control behaviour. Furthermore, it was found that alignment behaviour is independent of the rotation symmetry of the chemical structure but is dependent on the number of fluoromethylene chains in the chemical structure.  相似文献   

2.
The room‐temperature crystal structures of four new thio derivatives of N‐methylphenobarbital [systematic name: 5‐ethyl‐1‐methyl‐5‐phenylpyrimidine‐2,4,6(1H,3H,5H)‐trione], C13H14N2O3, are compared with the structure of the parent compound. The sulfur substituents in N‐methyl‐2‐thiophenobarbital [5‐ethyl‐1‐methyl‐5‐phenyl‐2‐thioxo‐1,2‐dihydropyrimidine‐4,6(3H,5H)‐dione], C13H14N2O2S, N‐methyl‐4‐thiophenobarbital [5‐ethyl‐1‐methyl‐5‐phenyl‐4‐thioxo‐3,4‐dihydropyrimidine‐2,6(1H,5H)‐dione], C13H14N2O2S, and N‐methyl‐2,4,6‐trithiophenobarbital [5‐ethyl‐1‐methyl‐5‐phenylpyrimidine‐2,4,6(1H,3H,5H)‐trithione], C13H14N2S3, preserve the heterocyclic ring puckering observed for N‐methylphenobarbital (a half‐chair conformation), whereas in N‐methyl‐2,4‐dithiophenobarbital [5‐ethyl‐1‐methyl‐5‐phenyl‐2,4‐dithioxo‐1,2,3,4‐tetrahydropyrimidine‐6(5H)‐one], C13H14N2OS2, significant flattening of the ring was detected. The number and positions of the sulfur substituents influence the packing and hydrogen‐bonding patterns of the derivatives. In the cases of the 2‐thio, 4‐thio and 2,4,6‐trithio derivatives, there is a preference for the formation of a ring motif of the R22(8) type, which is also a characteristic of N‐methylphenobarbital, whereas a C(6) chain forms in the 2,4‐dithio derivative. The preferences for hydrogen‐bond formation, which follow the sequence of acceptor position 4 > 2 > 6, confirm the differences in the nucleophilic properties of the C atoms of the heterocyclic ring and are consistent with the course of N‐methylphenobarbital thionation reactions.  相似文献   

3.
尹月燕  赵刚等 《中国化学》2002,20(8):803-808
6,6′-Bis(1H,1H,2H,2H-perfluorooctyl)-BINOL and 6,6′-bis(1H,1H,2H,2H-perfluorodecyl)-BINOL were synthesized through Suzuki coupling reaction and used in fluorous biphase asymmetric alkylation of benzldehyde,Good enantioselectivity was obtained and the catalysts could be recovered by liquid-liq-uid extraction.  相似文献   

4.
Reaction of cyclic β‐dicarbonyl compounds such as pyrimidine‐(1H,3H,5H)‐2,4,6‐trione (BA), 1,3‐dimethyl pyrimidine‐(1H,3H,5H)‐2,4,6‐trione (DMBA) and 2‐thioxo‐pyrimidine‐(1H,3H,5H)‐4,6‐dione (TBA) with cyanogen bromide in acetone and 2‐butanone in the presence of triethylamine afforded a new class of stable heterocyclic spiro[furo[2,3‐d]pyrimidine‐6,5′‐pyrimidine]2,2′,4,4′,6′(3H,3′H,5H)‐pentaones (dimeric forms of barbiturate) at 0 °C and ambient temperature. Structure elucidation was carried out by X‐ray crystallographic, 1H NMR, 13C NMR, two dimensional NMR, FT‐IR spectra, mass spectrometry and elemental analysis. The mechanism of product formation is discussed. The reaction of DMBA with cyanogen bromide in the presence of triethylamine also afforded trimeric form of barbiturate of uracil derivatives in good yield. The reaction of selected acyclic β‐dicarbonyl compounds with cyanogen bromide in the presence of triethylamine in acetone and/or diethyl ether has also been investigated under the same condition. Diethyl malonate and ethyl cyanoacetate brominated and also ethyl acetocetate both brominated and cyanated on active methylene via cyanogen bromide.  相似文献   

5.
1H,1H,2H,2H‐Heptadecafluorodecyl acrylate (AC8) was polymerized by reversible addition–fragmentation chain transfer and copolymerized with 2‐hydroxyethyl acrylate with the formation of random and block copolymers, respectively. The kinetics of the (co)polymerization was monitored with 1H NMR spectroscopy and showed that the homopolymerization and random copolymerization of AC8 were under control. As a result of this control and the use of S‐1‐dodecyl‐S‐(α,α′‐dimethyl‐α″‐acetic acid)trithiocarbonate as a chain‐transfer agent, the copolymer chains were end‐capped by an α‐carboxylic acid group. Moreover, the controlled polymerization of AC8 was confirmed by the successful synthesis of poly(1H,1H,2H,2H‐heptadecafluorodecyl acrylate)‐b‐poly(2‐hydroxyethyl acrylate) diblock copolymers, which were typically amphiphilic compounds. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1499–1506, 2007  相似文献   

6.
This paper presents the synthesis of a series of 5,6‐dihydro‐4H,8H‐pyrimido[1,2,3‐cd]purine‐8,10(9H)‐dione ring system derivatives with a [1,2,3]triazole ring bonded in position 2. The procedure is based on cycloaddition of substituted alkyl azides to the terminal triple bond of 5,6‐dihydro‐2‐ethynyl‐9‐methyl‐4H,8H‐pyrimido[1,2,3‐cd]purine‐8,10(9H)‐dione ( 4 ). This cycloaddition produced two regioisomers ?5,6‐dihydro‐9‐methyl‐2‐(1‐substituted‐1H‐[1,2,3]triazol‐5‐yl)‐4H,8H‐pyrimido[1,2,3‐cd]purine‐8,10(9H)‐dione ( 7 ) and 2‐(1‐substituted‐1H‐[1,2,3]triazol‐4‐yl) derivative 8 . The required 2‐ethynyl deriva tive 4 was obtained from the starting 2‐unsubstituted compound 1 by bromination to yield the 2‐bromo derivative 2 , which was converted by Sonogashira reaction to trimethylsilylethyne 3 and finally, the protective trimethylsilyl group was removed by hydrolysis.  相似文献   

7.
4‐Hydroxy‐1H‐quinolin‐2‐ones ( 1 ) react with thiocyanogen in acetic acid to the corresponding 3‐thiocyanato‐1H,3H‐quinoline‐2,4‐diones ( 2 ) in good yields. In some cases, 3‐bromo‐1H,3H‐quinoline‐2,4‐diones ( 4 ) were isolated as minor reaction products. Compounds 2 are very reactive towards nucleophiles and easily hydrolyze to the corresponding 4‐hydroxy‐1H‐quinoline‐2‐ones ( 1 ).  相似文献   

8.
A low‐temperature structure of ginkgolide A monohydrate, (1R,3S,3aS,4R,6aR,7aR,7bR,8S,10aS,11aS)‐3‐(1,1‐dimethylethyl)‐hexa­hydro‐4,7b‐di­hydroxy‐8‐methyl‐9H‐1,7a‐epoxymethano‐1H,6aH‐cyclo­penta­[c]­furo­[2,3‐b]­furo­[3′,2′:3,4]­cyclopenta­[1,2‐d]­furan‐5,9,12(4H)‐trione monohydrate, C20H24O9·H2O, obtained from Mo Kα data, is a factor of three more precise than the previous room‐temperature determination. A refinement of the ginkgolide A monohydrate structure with Cu Kα data has allowed the assignment of the absolute configuration of the series of compounds. Ginkgolide C sesquihydrate, (1S,2R,3S,3aS,4R,6aR,7aR,7bR,8S,10aS,11S,11aR)‐3‐(1,1‐di­methyl­ethyl)‐hexa­hydro‐2,4,7b,11‐tetrahydroxy‐8‐methyl‐9H‐1,7a‐epoxy­methano‐1H,6aH‐cyclopenta­[c]­furo­[2,3‐b]­furo­[3′,2′:3,4]­cyclo­penta­[1,2‐d]­furan‐5,9,12(4H)‐trione sesquihydrate, C20H24O11·1.5H2O, has two independent diterpene mol­ecules, both of which exhibit intramolecular hydrogen bonding between OH groups. Ginkgolide J dihydrate, (1S,2R,3S,3aS,4R,6aR,7aR,7bR,8S,10aS,11aS)‐3‐(1,1‐di­methyl­ethyl)‐hexa­hydro‐2,4,7b‐tri­hydroxy‐8‐methyl‐9H‐1,7a‐epoxy­methano‐1H,6aH‐cyclo­penta­[c]­furo­[2,3‐b]furo[3′,2′:3,4]­cyclo­penta­[1,2‐d]­furan‐5,9,12(4H)‐trione dihydrate, C20H24O10·2H2O, has the same basic skeleton as the other ginkgolides, with its three OH groups having the same configurations as those in ginkgolide C. The conformations of the six five‐membered rings are quite similar across ­ginkgolides A–C and J, except for the A and F rings of ginkgolide A.  相似文献   

9.
Reactivity of 2‐(4‐hydroxyphenyl)‐1H‐imidazoline and 2‐(4‐hydroxyphenyl)‐1H‐imidazole toward substituted phenyl isocyanates was studied. When mentioned imidazoline was treated with 2.5 equiv of substituted phenyl isocyanate, three N,O‐dicarboxamides were prepared (substituents are H, 4‐NO2, and 4‐CH3). Subsequently, N,O‐diacetylated 2‐(4‐hydroxyphenyl)‐1H‐imidazoline was prepared and selective deprotection method was developed for preparation of 1‐acetyl‐2‐(4‐hydroxyphenyl)‐1H‐imidazoline using diethylamine in acetone. Six carbamates derived from this imidazoline were then prepared using 1.1 equiv of substituted phenyl isocyanates (substituents are H, 4‐CH3, 4‐OCH3, 4‐NO2, 4‐CN, and 3‐CF3). Finally, two carbamates were prepared from 2‐(4‐hydroxyphenyl)‐1H‐imidazole (substituents are 4‐NO2 and 4‐CN). No reactivity to imidazole ring was observed in this case. Eight derivatives were subjected to antimycobacterial screening. Concurrently, reactivity of 2‐(2‐aminophenyl)‐ and 2‐(2‐hydroxyphenyl)‐1H‐imidazole toward aliphatic and aromatic isocyanates was studied. Eight ureas were prepared using equivalent mixture of 2‐(2‐aminophenyl)‐1H‐imidazole and isocyanate (Et, Pr, isoPr, terc‐Bu, Cy, Ph, 4‐CH3C6H4, 4‐CNC6H4). Similar attempts to obtain related carbamates from 2‐(2‐hydroxyphenyl)‐1H‐imidazole lead only to three substituted phenyl carbamates (substituents are 4‐CH3, 4‐NO2, and 4‐CN). In both cases, no reactivity to imidazole ring was observed again.  相似文献   

10.
A new, non‐iterative method for the asymmetric synthesis of long‐chain and polycyclic polypropanoate fragments starting from 2,2′‐ethylidenebis[3,5‐dimethylfuran] ( 2 ) has been developed. Diethyl (2E,5E)‐4‐oxohepta‐2,5‐dienoate ( 6 ) added to 2 to give a single meso‐adduct 7 containing nine stereogenic centers. Its desymmetrization was realized by hydroboration with (+)‐IpcBH2 (isopinocampheylborane), leading to diethyl (1S,2R,3S,4S,4aS,7R,8R,8aR,9aS,10R,10aR)‐1,3,4,7,8,8a,9,9a‐octahydro‐3‐hydroxy‐2,4,5,7,10‐pentamethyl‐9‐oxo‐2H,10H‐2,4a : 7,10a‐diepoxyanthracene‐1,8‐dicarboxylate ((+)‐ 8 ; 78% e.e.). Alternatively, 7 was converted to meso‐(1R,2R,4R,4aR,5S,7S,8S,8aR,9aS,10s,10aS)‐1,8‐bis(acetoxymethyl)‐1,8,8a,9a‐tetrahydro‐2,4,5,7,10‐pentamethyl‐2H‐10H‐2,4a : 7,10a‐diepoxyanthracene‐3,6,9(4H,5H,7H)‐trione ( 32 ) that was reduced enantioselectively by BH3 catalyzed by methyloxazaborolidine 19 derived from L ‐diphenylprolinol giving (1S,2S,4S,4aS,5S,6R,7R,8R,8aS,9aR,10R,10aS)‐1,8‐bis(acetoxymethyl)‐1,8,8a,9a‐tetrahydro‐6‐hydroxy‐2,4,5,7,10‐pentamethyl‐2H,10H‐2,4a : 7,10a‐diepoxyanthracene‐3,9(4H,7H)‐dione ((−)‐ 33 ; 90% e.e.). Chemistry was explored to carry out chemoselective 7‐oxabicyclo[2.2.1]heptanone oxa‐ring openings and intra‐ring C−C bond cleavage. Polycyclic polypropanoates such as (1R,2S,3R,4R,4aR,5S,6R,7S,8R,9R,10R,11S,12aR)‐1‐(ethoxycarbonyl)‐1,3,4,7,8,9,10,11,12,12a‐decahydro‐3,11‐dihydroxy‐2,4,5,7,9‐pentamethyl‐12‐oxo‐2H,5H‐2,4a : 6,9 : 6,11‐triepoxybenzocyclodecene‐10,8‐carbolactone ( 51 ), (1S,2R,3R,4R,4aS,5S,7S,8R,9R,10R,12S,12aS)‐1,10‐bis(acetoxymethyl)tetradecahydro‐8‐(methoxymethoxy)‐2,4,5,7,9‐pentamethyl‐3,9‐bis{[2‐(trimethylsilyl)ethoxy]methoxy}‐6,11‐epoxycyclodecene‐4a,6,11,12‐tetrol ((+)‐ 83 ), and (1R,2R,3R,4aR,4bR,5S,6R, 7R,8R,8aS,9S,10aR)‐3,5‐bis(acetoxymethyl)‐4a,8a‐dihydroxy‐1‐(methoxymethoxy)‐2,6,8,9,10a‐pentamethyl‐2,7‐bis{[2‐(trimethylsilyl)ethoxy]methoxy}dodecahydrophenanthrene‐4,10‐dione ( 85 ) were obtained in few synthetic steps.  相似文献   

11.
A new series of hydrazone, 2H‐benzopyranone‐3‐carboxamide and 2H‐benzopyranone‐3‐carbonylthiosemicarbazide derivatives were synthesized from the alkyl 7‐hydroxy‐2H‐benzopyranone‐3‐carboxylate ( 1a , b ) and dibromo derivatives ( 6a , b ) as a key starting materials. The structures of the synthesized new compounds were confirmed by IR, 1H, 13C‐NMR, MS, and elemental analysis. Some hydrazone derivatives and N‐substituted 2H‐benzopyranone‐3‐carboxamides were evaluated for their anticancer activity against HepG‐2 cell lines. Some of these compounds shared good cytotoxicity.  相似文献   

12.
The syntheses of two 2′,3′‐fused bicyclic nucleoside analogues, i.e., 1‐[(4aR,5R,7R,7aS)‐hexahydro‐5‐(hydroxymethyl)‐4,4‐dioxidofuro[3,4‐b][1,4]oxathiin‐7‐yl]pyrimidine‐2,4(1H,3H)‐dione ( 1a ) and 1‐[(4aS,5R,7R,7aS)‐hexahydro‐7‐(hydroxymethyl)‐1,1‐dioxido‐2H‐furo[3,4‐b][1,4]thiazin‐5‐yl]pyrimidine‐ 2,4(1H,3H)‐dione ( 1b ), are described, the key step being an intramolecular hetero‐Michael addition. Their structures and conformations, previously solved by X‐ray crystallography, were analyzed in more detail, using 1D‐ and 2D‐NMR as well as HR‐MS analyses.  相似文献   

13.
The chloro­form solvate of uncarine C (pteropodine), (1′S,3R,4′aS,5′aS,10′aS)‐1,2,5′,5′a,7′,8′,10′,10′a‐octa­hydro‐1′‐methyl‐2‐oxospiro­[3H‐indole‐3,6′(4′aH)‐[1H]­pyrano­[3,4‐f]indolizine]‐4′‐carboxyl­ic acid methyl ester, C21H24N2O4·CHCl3, has an absolute configuration with the spiro C atom in the R configuration. Its epimer at the spiro C atom, uncarine E (isopteropodine), (1′S,3S,4′aS,5′aS,10′aS)‐1,2,5′,5′a,7′,8′,10′,10′a‐octahydro‐1′‐methyl‐2‐oxospiro[3H‐indole‐3,6′(4′aH)‐[1H]pyrano[3,4‐f]indolizine]‐4′‐carboxylic acid methyl ester, C21H24N2O4, has Z′ = 3, with no solvent. Both form intermolecular hydrogen bonds involving only the ox­indole, with N?O distances in the range 2.759 (4)–2.894 (5) Å.  相似文献   

14.
Homophthalic anhydride 1 reacts with different aromatic amines to produce N‐substituted homophthalimides 2 under microwave irradiation. A rapid microwave‐assisted chemical synthesis of condensed 4‐substituted furo[2,3‐c]isoquinoline‐1,5(2H,4H)‐diones 3 and 5‐substituted‐2,3‐dihydro‐1H‐pyrano[2,3‐c]isoquinoline‐1,6(5H)‐diones 4 involving the condensation of a variety of alkanoyl chlorides with 2‐arylisoquinoline‐1,3‐diones 2 in the presence of base and aprotic solvent is described for the first time. By contrast, the facile ring opening reaction of furo[2,3‐c]isoquinoline‐1,5(2H,4H)‐dione 3 with Vilsmeier–Haack reagent under microwave irradiation yielded the α‐β unsaturated carboxyaldehyde 5 . This novel and clean one‐pot methodology, which is characterized by very short reaction time and easy workup procedure, can be exploited to generate some novel condensed isoquinoline derivatives.  相似文献   

15.
Two efficient and diastereoselective procedures for the synthesis of (Z)‐6‐(2‐oxo‐1,2‐dihydro‐3H‐indol‐3‐ylidene)‐3,3a,9,9a‐tetrahydroimidazo[4,5‐e]thiazolo[3,2‐b]‐1,2,4‐triazin‐2,7(1H,6H)‐diones by aldol‐crotonic condensation of 1,3‐dimethyl‐3a,9a‐diphenyl‐3,3a,9,9a‐tetrahydroimidazo[4,5‐e]thiazolo[3,2‐b]‐1,2,4‐triazin‐2,7(1H,6H)‐dione with isatins under acidic or basic catalysis are reported. Isomerization in (Z)‐7‐(1‐allyl‐2‐oxo‐1,2‐dihydro‐3H‐indol‐3‐ylidene)‐1,3‐dimethyl‐3a,9a‐diphenyl‐1,3a,4,9a‐tetrahydroimidazo[4,5‐e]thiazolo[2,3‐c]‐1,2,4‐triazin‐2,8(3H,7H)‐dione was observed under basic conditions.  相似文献   

16.
17.
A new series of 3‐[ω‐[4‐(4‐substituted phenyl)piperazin‐1‐yl]alkyl]‐5H‐pyrimido[5,4‐b]indole‐(1H,3H)‐2,4‐diones ( 3–10 and 12–13 ) were synthesized from the N‐(2‐chloroethyl)‐N'‐[3‐(2‐ethoxycarbonyl)indolyl] urea ( 1 ) or the N‐(3‐chloropropyl)‐N'‐[3‐(2‐ethoxycarbonyl)indolyl] urea ( 2 ) and a number of 1‐(4‐substi‐tuted‐phenyl)piperazines. 3‐[2‐[4‐(4‐Aminophenyl)piperazin‐1‐yl]ethyl]‐5H‐pyrimido[5,4‐b]indole‐(1H,3H)2,4‐dione ( 14 ) was obtained by reduction of the parent nitro compound 8 . The obtained 5H‐pyrimido[5,4‐b]indole‐(1H,3H)2,4‐dione derivatives were tested towards cloned α1A, α1B and α1D adrenergic receptors subtypes in binding assays. Some compounds showed good affinity and selectivity for the α1D‐adrenoceptor subtype.  相似文献   

18.
Phthalides are frequently found in naturally occurring substances and exhibit a broad spectrum of biological activities. In the search for compounds with insecticidal activity, phthalides have been used as versatile building blocks for the syntheses of novel potential agrochemicals. In our work, the Diels–Alder reaction between furan‐2(5H)‐one and cyclopentadiene was used successfully to obtain (3aR,4S,7R,7aS)‐3a,4,7,7a‐tetrahydro‐4,7‐methanoisobenzofuran‐1(3H)‐one and (3aS,4R,7S,7aR)‐3a,4,7,7a‐tetrahydro‐4,7‐methanoisobenzofuran‐1(3H)‐one ( 2 ) and (3aS,4S,7R,7aR)‐3a,4,7,7a‐tetrahydro‐4,7‐methanoisobenzofuran‐1(3H)‐one and (3aR,4R,7S,7aS)‐3a,4,7,7a‐tetrahydro‐4,7‐methanoisobenzofuran‐1(3H)‐one ( 3 ). The endo adduct ( 2 ) was brominated to afford (3aR,4R,5R,7R,7aS,8R)‐5,8‐dibromohexahydro‐4,7‐methanoisobenzofuran‐1(3H)‐one and (3aS,4S,5S,7S,7aR,8S)‐5,8‐dibromohexahydro‐4,7‐methanoisobenzofuran‐1(3H)‐one ( 4 ) and (3aS,4R,5R,6S,7S,7aR)‐5,6‐dibromohexahydro‐4,7‐methanoisobenzofuran‐1(3H)‐one and (3aR,4S,5S,6R,7R,7aS)‐5,6‐dibromohexahydro‐4,7‐methanoisobenzofuran‐1(3H)‐one ( 5 ). Following the initial analysis of the NMR spectra and the proposed two novel unforeseen products, we have decided to fully analyze the classical and non‐classical assay structures with the aid of computational calculations. Computation to predict the 13C and 1H chemical shifts for mean absolute error analyses have been carried out by gauge‐including atomic orbital method at M06‐2X/6‐31+G(d,p) and B3LYP/6‐311+G(2d,p) levels of theory for all viable conformers. Characterization of the novel unforeseen compounds ( 4 ) and ( 5 ) were not possible by employing only the experimental NMR data; however, a more conclusive structural identification was performed by comparing the experimental and theoretical 1H and 13C chemical shifts by mean absolute error and DP4 probability analyses. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
The absolute configuration of strictosidinic acid, (2S,3R,4S)‐3‐ethenyl‐2‐(β‐d ‐glucopyranosyloxy)‐4‐{[(1S)‐2,3,4,9‐tetrahydro‐1H‐pyrido[3,4‐b]indol‐1‐yl]methyl}‐3,4‐dihydro‐2H‐pyran‐5‐carboxylate, was determined from its sodium chloride trihydrate, poly[[diaqua((2S,3R,4S)‐3‐ethenyl‐2‐(β‐d ‐glucopyranosyloxy)‐4‐{[(1S)‐2,3,4,9‐tetrahydro‐1H‐pyrido[3,4‐b]indol‐2‐ium‐1‐yl]methyl}‐3,4‐dihydro‐2H‐pyran‐5‐carboxylate)sodium] chloride monohydrate], {[Na(C26H32N2O9)(H2O)2]Cl·H2O}n. The strictosidinic acid molecule participates in intermolecular hydrogen bonds of the O—H...O and O—H...Cl types. The solid‐state conformation was observed as a zwitterion, based on a charged pyridine N atom and a carboxylate group, the latter mediating the packing through coordination with the sodium cation.  相似文献   

20.
A new eudesmanolide, 1‐oxo‐11αH‐eudesma‐2,4(14)‐dien‐12,8β‐olide ( 1 ), and four new guaianolides, 9β,10β‐epoxy‐4α‐hydroxy‐1βH,11αH‐guaian‐12,8α‐olide ( 2 ), 9β,10β‐epoxy‐4α‐hydroxy‐1βH,11βH‐guaian‐12,8α‐olide ( 3 ), 4α,9α‐dihydroxy‐1βH,11αH‐guai‐10(14)‐en‐12,8α‐olide ( 4 ), and 4α,9α‐dihydroxy‐1βH,11βH‐guai‐10(14)‐en‐12,8α‐olide ( 5 ), together with one known eudesmanolide and two known germacranolides, were isolated from the whole plants of Carpesium triste. Their structures and relative configurations were elucidated on the basis of spectroscopic methods, including 2D‐NMR techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号