首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Polyvinylpolysilsesquioxane (PVPS) organic-inorganic hybrid gel films containing polyethylene and siloxane backbone linkages were prepared through the radical polymerization of trimethoxy(vinyl)silane (VTS) followed by the acid-catalyzed hydrolytic polycondensation of trimethoxysilyl groups. The PVPS gel films were transparent and homogeneous. It was found that the mechanical properties of these films correlate both to the degrees of polymerization and to the extent of cross linking.  相似文献   

2.
A series of ethylene–vinyl chloride‐like copolymers were prepared by ring‐opening metathesis polymerization (ROMP). The route to these materials included the bulk polymerization of 5‐chlorocyclooctene and 5,6‐dichlorocyclooctene with the first‐generation Grubbs' catalyst, followed by diimide hydrogenation of the resulting unsaturated polymers. In addition, the amount of chlorine in these materials was varied by the copolymerization of 5‐chlorocyclooctene with cyclooctene. These materials were fully characterized by NMR (1H and 13C), gel permeation chromatography, and Fourier transform infrared spectroscopy. Finally, hydroboration was carried out on the ROMP product of 5‐chlorocyclooctene to yield a polymer, which was effectively a vinyl alcohol–vinyl chloride–ethylene terpolymer. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2107–2116, 2003  相似文献   

3.
2,2′‐Azobis[N‐(2‐propenyl)‐2‐methylpropionamide] (APMPA) with two carbon–carbon double bonds and an azo group was copolymerized with vinyl benzoate (VBz) at 60 °C, resulting in azo groups containing VBz/APMPA prepolymers and crosslinked polymers as soluble and insoluble polymeric azo initiators, respectively. The polymerization characteristics of APMPA as a novel diallyl monomer were clarified with the rate and degree of polymerization and the monomer reactivity ratios. The gelation behaviors in VBz/APMPA crosslinking copolymerizations were examined in detail with a comparison of the actual gel point and the theoretical gel point calculated according to Stockmayer's equation with the tentative assumption of equal reactivity for both vinyl groups belonging to VBz and APMPA. The effectiveness of the resulting branched or crosslinked poly(VBz‐co‐APMPA)s as soluble or insoluble polymeric azo initiators, respectively, at providing graft polymers through the cleavage of azo groups at an elevated temperature was examined by the polymerization of allyl benzoate at 120 °C. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 317–325, 2002  相似文献   

4.
The spatial inhomogeneity in polystyrene (PS) gels has been investigated with the static light scattering technique. PS gels were prepared starting from styrene monomer and ethylene glycol dimethacrylate crosslinker in a homogeneous solution. The gel synthesis parameters varied were the crosslinker concentration, the primary chains length and the quality of the polymerization solvent. The gels were characterized by elasticity tests as well as by light scattering measurements at a gel state just after their preparation. The degree of spatial gel inhomogeneity decreased with decreasing crosslinker content, with decreasing primary chain length or, with increasing quality of the polymerization solvent. It was shown that the gel synthesis parameters varied mainly affect the distance between the pendant vinyl groups locating on the same macromolecule during the gel formation process. Increasing the distance between the pendant vinyl groups reduces the rate of the multiple crosslinking reactions so that the resulting PS gels exhibit a lesser degree of inhomogeneity.  相似文献   

5.
The effects of chain transfer agents (CTA) on cationic ring‐opening polymerization of 3,4‐epoxycyclohexylmethyl‐3′,4′‐epoxycyclohexane carboxylate (EEC) were explored. EEC was polymerized in the presence of various CTAs, and epoxide conversions monitored via Raman spectroscopy. Polymer films were prepared and analyzed by dynamic mechanical analysis. Many of the organic alcohols studied greatly enhanced epoxide polymerization rates and conversion levels. The gel fraction of polymer specimens decreased rapidly with increasing amounts of octanol (gel fraction >90% up to 0.3 equiv OH) but remained high with increasing amounts of 1,2‐propanediol (gel fraction >90% up to 0.6 equiv OH). Increasing the size of primary alcohols had little effect on the polymerization rates and conversions. The polymerization rate decreased with increasing alcohol substitution (1°>2°>3°). Acidic alcohols had very low impact on conversion and polymerization rates relative to the neat epoxy resin. The glass transition temperature was inversely related to the size and amount of CTA. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

6.
We describe the synthesis and characterization of a series of poly(vinyl acetate‐co‐dibutyl maleate) [P(VAc‐DBM)] latex particles (monomer molar ratio 10.6:1). One set of samples [high‐M and M250k SDS‐P(VAc‐DBM), gel content 50% and 0%] was prepared in the presence of an anionic surfactant sodium dodecyl sulfate. The other two sets of samples [high‐M and M250k PVOH–P(VAc‐DBM)] were prepared in the presence of poly(vinyl alcohol) (PVOH). These polymers differ in gel content (50 and 0%) and the extent of PVOH grafting (30 and 15%). Polymer diffusion across cell boundaries in the latex films was monitored by fluorescence resonant energy transfer (ET) experiments. First, we examined M250k samples in the presence of grafted and post‐added PVOH. The presence of post‐added PVOH (5%) causes a small but detectable retardation on the rate of polymer diffusion, whereas the presence of grafted PVOH (degree of grafting: 15%) significantly promotes the polymer diffusion rate. For the high‐M P(VAc‐DBM), the presence of post‐added PVOH also retards the polymer diffusion. Strikingly, the presence of grafted PVOH (degree of grafting: 30%) in the high‐M PVOH‐P(VAc‐DBM) promotes the polymer diffusion to such an extent that the diffusion was complete in the freshly prepared films. Our data also suggest that under our experimental conditions, the rate of P(VAc‐DBM) diffusion increases with an increase of the degree of PVOH grafting. To confirm these results, we carried out fluorescence microscopy experiments to monitor the fate of PVOH in these latex films and found that in newly formed PVOH–P(VAc‐DBM) films, the PVOH was either uniformly distributed in the P(VAc‐DBM) matrix or the domains were too small to be resolved (i.e., < 0.5 μm). © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5005–5020, 2004  相似文献   

7.
Acrylic polymer/silica hybrids were prepared by emulsifier‐free emulsion polymerization and the sol–gel process. Acrylic polymer emulsions containing triethoxysilyl groups were synthesized by emulsifier‐free batch emulsion polymerization. The acrylic polymer/silica hybrid films prepared from the acrylic polymer emulsions and tetraethoxysilane (TEOS) were transparent and solvent‐resistant. Atomic force microscopy studies of the hybrid film surface suggested that the hybrid films did not contain large (e.g., micrometer‐size) silica particles, which could be formed because of the organic–inorganic phase separation. The Si? O? Si bond formed by the cocondensation of TEOS and the triethoxysilyl groups on the acrylic polymer increased the miscibility between the acrylic polymer component and the silica component in the hybrid films, in which the nanometer‐size silica domains (particles) were dispersed homogeneously in the acrylic polymer component. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 273–280, 2006  相似文献   

8.
A detailed investigation of the polymerization of allyl methacrylate, a typical unsymmetrical divinyl compound containing two types of vinyl groups, methacryloyl and allyl, with quite different reactivities, was performed with atom transfer radical polymerization (ATRP). Homopolymerizations were carried out in bulk, with ethyl‐2‐bromoisobutyrate as the initiator and with copper halide (CuX, where X is Cl or Br) with N,N,N,N,N″‐pentamethyldiethylenetriamine as the catalyst system. Kinetic studies demonstrated that during the early stages of the polymerization, the ATRP process proceeded in a living manner with a low and constant radical concentration. However, as the reaction continued, the increased diffusion resistance restricted the mobility of the catalyst system and interrupted the equilibrium between the growing radicals and dormant species. The obtained poly(allyl methacrylate)s (PAMAs) were characterized with Fourier transform infrared, 1H NMR, and size exclusion chromatography techniques. The dependence of both the gel point conversion and molecular characteristics of the PAMA prepolymers on different experimental parameters, such as the initiator concentration, polymerization temperature, and type of halide used as the catalyst, was analyzed. These real gel points were compared with the ones calculated according to Gordon's equation under the tentative assumption of equal reactivity for the two types of vinyl groups. Moreover, the microstructure of the prepolymers was the same as that exhibited by those homopolymers prepared by conventional free‐radical polymerization; the fraction of syndiotactic arrangements increased as the reaction temperature was lowered. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2395–2406, 2005  相似文献   

9.
Novel semi‐IPN (interpenetrating polymer networks) were synthesized through vinyl silane modification of unplasticized poly(vinyl chloride) (PVC) films using relatively low temperatures, relatively high vinyl silane contents, and several different processing routes. A free‐radical initiator was used to promote reaction of the vinyl groups, and an aqueous acetic acid solution was used to promote the methoxysilane hydrolysis and condensation (HC) reactions for siloxane crosslink formation. A gel consisting of silane alone was formed prior to the HC process, indicating the formation of a semi‐IPN. The gel content following the HC process far exceeded the silane content, indicating a significant amount of PVC was entrapped by the silane network. This conclusion is supported by the homogeneous molecular structure and morphology of the films. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 8–22, 2001  相似文献   

10.
Thermally stable ordered films were prepared by in-situ photopolymerization of an oriented monomer mixture, consisting of mesogenic monofunctional and bifunctional vinyl ethers. Orientation was achieved by a simple surface treatment, using an unidirectionally rubbed polyimide film. The films restored their orientation when cooled down from temperatures of 200°C. Highly ordered densely crosslinked films have been prepared by polymerization of bifunctional mesogenic vinyl ether monomers. Polymerization from various monomer phases resulted in LC polymer network films with different molecular organizations. It was shown that films with nematic, smectic A and smectic B structures were obtained, the latter having a very high degree of orientation. The films were analyzed with small-angle X-ray scattering, polarized light microscopy and infrared- dichroism measurements.  相似文献   

11.
A series of end‐functionalized poly(9,9′‐di‐n ‐octylfluorene vinylene)s (EF‐PFVs) with different end groups were obtained by 1) synthesizing EF‐PFV with vinyl end groups by acyclic diene metathesis (ADMET) polymerization with a molybdenum catalyst and termination with an aldehyde and 2) subsequent olefin metathesis of the vinyl group with the molybdenum catalyst followed by Wittig‐type coupling with another aldehyde. The exclusive formation of EF‐PFVs containing a vinyl end group by the ADMET polymerization was confirmed by grafting PEG, and by the synthesis of amphiphilic triblock copolymers by combining atom transfer radical polymerization from the PFV chain end with PEG grafting through a click reaction. Various EF‐PFVs with different end groups, such as C6F5, pyridyl, ferrocenyl, and terthiophene, have thus been prepared. Their fluorescence spectra (e.g., intensities, emission wavelengths) were influenced by the end groups and the length of the conjugation.  相似文献   

12.
Sol‐gel reversible hydrogels sensitive to environmental glucose concentration were prepared using concanavalin A (Con A) and glucose‐containing polymers. Since the components of the hydrogels in the sol state can be released to the environment through pores of the dialysis membrane, it was necessary to immobilize Con A to the glucose‐containing polymers. Con A was immobilized by two different approaches. First, vinyl groups were introduced to Con A so that it can participate in the vinyl polymerization of allyl glucoside. Second, glucose‐containing polymers containing chemically reactive pendant groups were synthesized so that Con A could be immobilized to the preformed polymers. Both approaches resulted in effective immobilization of Con A to the glucose‐containing polymers, but the second method appeared to be better in terms of maintaining the bioactivity of Con A.  相似文献   

13.

HCl elimination in low ratio was first carried out from poly(vinyl chloride) to increase allylic chlorines. Partially dehydrochlorinated poly(vinyl chloride), having a macroinitiator effect, was grafted with tert‐butyl methacrylate via atom transfer radical polymerization in the presence of CuBr/2,2′‐bipyridine at 64°C in tetrahydrofuran. Original poly(vinyl chloride) was also grafted with tert‐butyl methacrylate under the same conditions to compare with that of partially dehydrochlorinated poly(vinyl chloride). The graft copolymers were characterized by elemental analysis, FTIR, 1H and 13C‐NMR, differential scanning calorimetry, and gel permeation chromatography (GPC). Thermal stabilities of the graft copolymers were investigated by thermogravimetric analysis as compared with those of the macroinitiators.  相似文献   

14.
The living cationic polymerization of octadecyl vinyl ether (ODVE) was achieved with an 1‐(isobutoxy)ethyl acetate [CH3CH(OiBu)OCOCH3]/EtAlCl2 initiating system in hexane in the presence of an added weak Lewis base at 30 °C. In contrast to conventional polymers, poly(octadecyl vinyl ether) underwent upper‐critical‐solution‐temperature‐type phase separation in various solvents, such as hexane, toluene, CH2Cl2, and tetrahydrofuran, because of the crystallization of octadecyl chains. Amphiphilic block and random copolymers with crystallizable substituents of ODVE and 2‐methoxyethyl vinyl ether (MOVE) were synthesized via living cationic polymerization under similar conditions. Aqueous solutions of the copolymers yielded physical gels upon cooling because of strong interactions between ODVE units, regardless of the copolymer structure. The product gels, however, exhibited different viscoelastic properties: A 20 wt % solution of a block copolymer (400/20 MOVE/ODVE) became a soft physical gel that behaved like a typical gel, whereas the corresponding random copolymer gave a transparent but stiff gel with a certain relaxation time. Differential scanning calorimetry analysis confirmed that the crystalline–amorphous transition of the octadecyl chains was a key step for inducing such physical gelation. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1155–1165, 2005  相似文献   

15.
Well‐defined poly(vinyl acetate) macroinitiators, with the chains thus end‐capped by a cobalt complex, were synthesized by cobalt‐mediated radical polymerization and used to initiate styrene polymerization at 30 °C. Although the polymerization of the second block was not controlled, poly(vinyl acetate)‐b‐polystyrene copolymers were successfully prepared and converted into amphiphilic poly(vinyl alcohol)‐b‐polystyrene copolymers by the methanolysis of the ester functions of the poly(vinyl acetate) block. These poly(vinyl alcohol)‐b‐polystyrene copolymers self‐associated in water with the formation of nanocups, at least when the poly(vinyl alcohol) content was low enough. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 81–89, 2007  相似文献   

16.
Thermosensitive homopolymers and copolymers with hydroxy groups were synthesized via the living cationic polymerization of Si‐containing vinyl ethers. The cationic homopolymerization and copolymerization of five vinyl ethers with silyloxy groups, each with a different spacer length, were examined with a cationogen/Et1.5AlCl1.5 initiating system in the presence of an added base. When an appropriate base was added, the living cationic polymerization of Si‐containing monomers became feasible, giving polymers with narrow molecular weight distributions and various block copolymers. Subsequent desilylation gave well‐defined polyalcohols, in both water‐soluble and water‐insoluble forms. One of these polyalcohols, poly(4‐hydroxybutyl vinyl ether), underwent lower‐critical‐solution‐temperature‐type thermally induced phase separation in water at a critical temperature (TPS) of 42 °C. This phase separation was quite sensitive and reversible on heating and cooling. The phase separation also occurred sensitively with random copolymers of thermosensitive and hydrophilic or hydrophobic units, the TPS values of which in water could be controlled by the monomer feed ratio. The thermal responsiveness of this polyalcohol unit made it possible to prepare novel thermosensitive block and random copolymers consisting solely of alcohol units. One example prepared in this study was a 20 wt % aqueous solution of a diblock copolymer consisting of thermosensitive poly(4‐hydroxybutyl vinyl ether) and water‐soluble poly(2‐hydroxyethyl vinyl ether) segments, which transformed into a physical gel above 42 °C. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3300–3312, 2003  相似文献   

17.
The purpose of this research is to study the synthesis and characterization of stable aqueous dispersions of externally chain extended polyurethane/urea compositions terminated by hydrolyzable or hydrolyzed trialkoxysilane groups incorporated through secondary amino groups. These dispersions with excellent storage stability are substantially free from organic solvents which cure to water and solvent resistant, tough, scratch resistant, preferably light stable (non‐yellowing) silylated polyurethane (SPU) films. The films were characterized by FT‐IR, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), tensile strength and water contact angle measurements, nanoindentation, gel content, water and xylene swellability tests. The properties of the films were discussed and correlated in detail by changing length of soft segment, diisocyanates, NCO/OH ratio and chain extender, ethylenediamine (EDA). From the results, it was found that the particle size and viscosity are lower whereas the gel content and thermal stability are higher for SPUs. Modulus, hardness and tensile properties of SPU films are superior compared to EDA‐PU film. Higher water contact angle and residual weight percentage of SPU films confirm silylation of PU by [3‐(phenylamino)propyl]trimethoxysilane (PAPTMS). Increase in NCO/OH ratios consumes more quantity of PAPTMS which makes PU with superior mechanical properties. Higher PAPTMS content in SPU results in effective crosslinking of the functional silanol groups formed by hydrolysis reaction of trimethoxysilane groups. Overall, SPUs synthesized at 1.4 NCO/OH ratio using Poly‐(oxytetramethylene)glycol (PTMG)‐2000 and isophorone diisocyanate (or) toluene‐2,4‐diisocyanate have excellent properties compared to SPUs prepared using PTMG‐1000 and at 1.2 and 1.6 NCO/OH ratios. SPUs prepared at 1.6 NCO/OH ratio are brittle due to higher crosslinking density. In addition, the crosslinking density of the films can be modified through silane end‐group modification to produce SPUs with a wide range of physical properties. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
Hydrophilic polymeric films based on blends of poly(acrylic acid) and poly(vinyl methyl ether) (PVME) were prepared by casting technique and were cross-linked by gamma-radiation. The films are soft and elastic in a dry state and form hydrogels upon immersion in water. Effect of absorbed dose on the gel fraction as well as on the swelling of the films in aqueous solutions of different pH is studied. It was found that addition of lower molecular weight PVME decreases the gelation dose, which is likely related to a decrease in glass transition temperature of the blends. In acidic media the films have low swelling degree because of suppression of carboxylic groups ionisation and formation of additional physical cross-links via interpolymer hydrogen bonding.  相似文献   

19.
Hyperbranched polymethacrylates were prepared by means of oxyanionic vinyl polymerization of commercially available monomers, including hydroxyethyl methacrylate (HEMA) and poly(ethylene glycol) methacrylate (PEG‐MA). Hyperbranched polymethacrylates with high molecular weight were obtained with the complex of potassium hydride and 18‐crown‐6 as the initiator. The effect of 18‐crown‐6 is very important, and only oligomer can be obtained in the polymerization without 18‐crown‐6. The molecular structure of the hyperbranched polymers was confirmed with 1H NMR and 13C NMR spectra. The ratio of initiator to monomer significantly affects the architecture of the resultant polymers. When the ratio of initiator to monomer equals 1 in the oxyanionic vinyl polymerization of HEMA, the degree of branching of the resulting polymer was calculated to be around 0.49. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3502–3509, 2005  相似文献   

20.
The ABA‐type triblock copolymers consisting of poly(2‐adamantyl vinyl ether) [poly(2‐AdVE)] as outer hard segments and poly(6‐acetoxyhexyl vinyl ether) [poly(AcHVE)], poly(6‐hydroxyhexyl vinyl ether) [poly(HHVE)], or poly(2‐(2‐methoxyethoxy)ethyl vinyl ether) [poly(MOEOVE)] as inner soft segments were synthesized by sequential living cationic polymerization. Despite the presence of polar functional groups such as ester, hydroxyl, and oxyethylene units in their soft segments, the block copolymers formed elastomeric films. The thermal and mechanical properties and morphology of the block copolymers showed that the two polymer segments of these triblock copolymers were segregated into microphase‐separated structure. Effect of the functional groups in the soft segments on gas permeability was investigated as one of the characteristics of the new functional thermoplastic elastomers composed solely of poly(vinyl ether) backbones. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1114–1124  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号