首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cation exchange and anion exchange liquid chromatography were coupled to an ICP-MS and optimised for the separation of 13 different arsenic species in body fluids (arsenite, arsenate, dimethylarsinic acid (DMAA), monomethylarsonic acid (MMAA), trimethylarsine oxide (TMAO), tetramethylarsonium ion (TMA), arsenobetaine (AsB), arsenocholine (AsC), dimethylarsinoyl ethanol (DMAE) and four common dimethylarsinoylribosides (arsenosugars). The arsenic species were determined in seaweed extracts and in the urine and blood serum of seaweed-eating sheep from Northern Scotland. The sheep eat 2–4 kg of seaweed daily which is washed ashore on the most northern Island of Orkney. The urine, blood and wool of 20 North Ronaldsay sheep and kidney, liver and muscle from 11 sheep were sampled and analysed for their arsenic species. In addition five Dorset Finn sheep, which lived entirely on grass, were used as a control group. The sheep have a body burden of approximately 45–90 mg arsenic daily. Since the metabolism of arsenic species varies with the arsenite and arsenate being the most toxic, and organoarsenic compounds such as arsenobetaine the least toxic compounds, the determination of the arsenic species in the diet and their body fluids are important. The major arsenic species in their diet are arsenoribosides. The major metabolite excreted into urine and blood is DMAA (95 ± 4.1%) with minor amounts of MMAA, riboside X, TMA and an unidentified species. The occurrence of MMAA is assumed to be a precursor of the exposure to inorganic arsenic, since demethylation of dimethylated or trimethylated organoarsenic compounds is not known (max. MMAA concentration 259 μg/L). The concentrations in the urine (3179 ± 2667 μg/L) and blood (44 ± 19 μg/kg) are at least two orders of magnitude higher than the level of arsenic in the urine of the control sheep or literature levels of blood for the unexposed sheep. The tissue samples (liver: 292 ± 99 μg/kg, kidney: 565 ± 193 μg/kg, muscle: 680 ± 224 μg/kg) and wool samples (10 470 ± 5690 μg/kg) show elevated levels which are also 100 times higher than the levels for the unexposed sheep. Received: 29 February 2000 / Revised: 26 April 2000 / Accepted: 1 May 2000  相似文献   

2.
Cation exchange and anion exchange liquid chromatography were coupled to an ICP-MS and optimised for the separation of 13 different arsenic species in body fluids (arsenite, arsenate, dimethylarsinic acid (DMAA), monomethylarsonic acid (MMAA), trimethylarsine oxide (TMAO), tetramethylarsonium ion (TMA), arsenobetaine (AsB), arsenocholine (AsC), dimethylarsinoyl ethanol (DMAE) and four common dimethylarsinoylribosides (arsenosugars). The arsenic species were determined in seaweed extracts and in the urine and blood serum of seaweed-eating sheep from Northern Scotland. The sheep eat 2-4 kg of seaweed daily which is washed ashore on the most northern Island of Orkney. The urine, blood and wool of 20 North Ronaldsay sheep and kidney, liver and muscle from 11 sheep were sampled and analysed for their arsenic species. In addition five Dorset Finn sheep, which lived entirely on grass, were used as a control group. The sheep have a body burden of approximately 45-90 mg arsenic daily. Since the metabolism of arsenic species varies with the arsenite and arsenate being the most toxic, and organoarsenic compounds such as arsenobetaine the least toxic compounds, the determination of the arsenic species in the diet and their body fluids are important. The major arsenic species in their diet are arsenoribosides. The major metabolite excreted into urine and blood is DMAA (95 +/- 4.1%) with minor amounts of MMAA, riboside X, TMA and an unidentified species. The occurrence of MMAA is assumed to be a precursor of the exposure to inorganic arsenic, since demethylation of dimethylated or trimethylated organoarsenic compounds is not known (max. MMAA concentration 259 microg/L). The concentrations in the urine (3179 +/- 2667 microg/L) and blood (44 +/- 19 microg/kg) are at least two orders of magnitude higher than the level of arsenic in the urine of the control sheep or literature levels of blood for the unexposed sheep. The tissue samples (liver: 292 +/- 99 microg/kg, kidney: 565 +/- 193 microg/kg, muscle: 680 +/- 224 microg/kg) and wool samples (10470 +/- 5690 microg/kg) show elevated levels which are also 100 times higher than the levels for the unexposed sheep.  相似文献   

3.
In the marine environment, arsenic accumulates in seaweed and occurs mostly in the form of arsenoribofuranosides (often called arsenosugars). This study investigated the degradation pathways of arsenosugars from decaying seaweed in a mesocosm experiment. Brown seaweed (Laminaria digitata) was placed on top of a marine sediment soaked with seawater. Seawater and porewater samples from different depths were collected and analysed for arsenic species in order to identify the degradation products using high‐performance liquid chomatography–inductively coupled plasma mass spectrometry. During the first 10 days most of the arsenic found in the seawater and the shallow sediment is in the form of the arsenosugars released from the seaweed. Dimethylarsenoylethanol (DMAE), dimethylarsinic acid (DMA(V)) and, later, monomethylarsonic acid (MMA(V)) and arsenite and arsenate were also formed. In the deeper anaerobic sediment, the arsenosugars disappear more quickly and DMAE is the main metabolite with 60–80% of the total arsenic for the first 60 days besides a constant DMA(V) contribution of 10–20% of total soluble arsenic. With the degradation of the soluble DMAE the solubility of arsenic decreases in the sediment. The final soluble degradation products (after 106 days) were arsenite, arsenate, MMA(V) and DMA(V). No arsenobetaine or arsenocholine were identified in the porewater. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
Sheep on the island of North Ronaldsay (Orkney, UK) feed mostly on seaweed, which contains high concentrations of dimethylated arsenoribosides. Wool of these sheep contains dimethylated, monomethylated and inorganic arsenic, in addition to unidentified arsenic species in unbound and complexed form. Chromatographic techniques using different separation mechanisms and detectors enabled us to identify five arsenic species in water extracts of wool. The wool contained 5.2 ± 2.3 µg arsenic per gram wool. About 80% of the arsenic in wool was extracted by boiling the wool with water. The main species is dimethylarsenic, which accounted for about 75 to 85%, monomethylated arsenic at about 5% and the rest is inorganic arsenic. Depending on the separation method and condition, the chromatographic recovery of arsenic species was between 45% for the anion exchange column, 68% for the size exclusion chromatography (SEC) and 82% for the cation exchange column. The SEC revealed the occurrence of two unknown arsenic compounds, of which one was probably a high molecular mass species. Since chromatographic recovery can be improved by either treating the extract with CuCl/HCl (CAT: 90%) or longer storage of the sample (CAT: 105%), in particular for methylated arsenic species, it can be assumed that labile arsenic–protein‐like coordination species occur in the extract, which cannot be speciated with conventional chromatographic methods. It is clear from our study of sheep wool that there can be different kinds of ‘hidden’ arsenic in biological matrices, depending on the extraction, separation and detection methods used. Hidden species can be defined as species that are not recordable by the detection system, not extractable or do not elute from chromatographic columns. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
 The National Institute for Environmental Studies (NIES) recently prepared two candidate certified reference materials (CRMs) for arsenicals to meet the growing demand for the quality assurance of arsenic speciation analysis. The NIES candidate CRM No. 14 Brown Alga was prepared from Hijiki seaweed for the certification of inorganic arsenic content, and No. 15 Scallop was prepared from adductor muscle of scallop for the certification of arsenobetaine content. The preparation of the candidate CRMs is briefly described. Cooperative analyses for total arsenic content of the candidate CRMs have been underway. The preliminary speciation analysis at NIES revealed difficulty in establishing suitable conditions for extracting arsenic species from the materials. Chromatograms of arsenic species by a high performance liquid chromatography-inductively coupled plasma mass spectrometric detection system are presented to provide information about arsenic species present in these candidate CRMs.  相似文献   

6.
Raab A  Hansen HR  Zhuang L  Feldmann J 《Talanta》2002,58(1):67-76
Wool or hair fibre is a metabolically dead material after it has left the epidermis. During growth the fibre in the root is a metabolically very active organ, which is highly influenced by the health status of the living being. Arsenic is one of the elements that is easily taken up by the cells of the root and stored in the fibre afterwards. Here we show that arsenic can quantitatively be extracted by boiling the wool fibre or hair in water. The high intake of arsenic species by the sheep of North Ronaldsay (the seaweed-eating sheep) leads to a high arsenic concentration in wool (mean 5.2+/-2.3 mug g(-1)). The wool of lambs of these sheep, which are not exposed to seaweed, contains about 10 times less arsenic, which is still elevated compared to uncontaminated wool. The arsenic species identified in wool extract are arsenite (As(III)), arsenate (As(V)), monomethylarsonic acid (MMA(V)) and monomethylarsonious acid (MMA(III)) as minor species. The major species is dimethylated arsenic DMA in its tri- and pentavalent form (dimethylarsinous acid (DMA(III)) and dimethylarsinic acid (DMA(V))) accounting for 85% of the specified arsenic in the wool which reflects the amount of dimethylated species (i.e. the arsenoribofuranosides) taken up by seaweed being the main food source of the sheep. However, there are unknown arsenic species in the extract, which are not eluting from a strong anion exchange column. In vitro incubation experiments with this kind of wool showed that it has reducing properties but no demethylation was recorded. The absorption ability of the wool for methylated arsenic species is negligible, while inorganic arsenic is easier to be absorbed in the fibre (11-17%). This means that the species integrity is only guaranteed in terms of the degree of methylation but not in terms of their redox status.  相似文献   

7.
Han  Chao  Cao  Xuan  Yu  Jing-Jing  Wang  Xiao-Ru  Shen  Yan 《Chromatographia》2009,69(5-6):587-591

Sargassum fusiforme, the common Chinese edible seaweeds, was investigated for total arsenic concentration by ICP-MS and for individual arsenic species by LC-ICP-MS. For this purpose, a microwave-assisted procedure was used for the extraction of arsenic species in freeze-dried seaweed and an analytical procedure for the sensitive and efficient speciation of the arsenic species As(III), dimethylarsinic acid, monomethyl arsonic acid, As(V), arsenobetaine and arsenocholine was optimized. Arsenic compounds were extracted from the seaweed with a methanol/water mixture; the extracts were evaporated to dryness, redissolved in water, and chromatographed on an anion exchange column. The arsenic species in Sargassum fusiforme are abundant. In some sample, the majority of arsenic compounds detected in the extracts were inorganic species, with a predominance of As (V). In addition, some significant amounts of unidentified arsenic compounds were also observed in the extracts.

  相似文献   

8.
In this study the accumulation and distribution of arsenic compounds in marine fish species in relation to their trophic position was investigated. Arsenic compounds were measured in eight tissues of mullet Mugil cephalus (detritivore), luderick Girella tricuspidata (herbivore) and tailor Pomatomus saltatrix (carnivore) by high performance liquid chromatography–inductively coupled plasma‐mass spectrometry. The majority of arsenic in tailor tissues, the pelagic carnivore, was present as arsenobetaine (86–94%). Mullet and luderick also contained high amounts of arsenobetaine in all tissues (62–98% and 59–100% respectively) except the intestines (20% and 24% respectively). Appreciable amounts of dimethylarsinic acid (1–39%), arsenate (2–38%), arsenite (1–9%) and trimethylarsine oxide (2–8%) were identified in mullet and luderick tissues. Small amounts of arsenocholine (1–3%), methylarsonic acid (1–3%) and tetramethylarsonium ion (1–2%) were found in some tissues of all three species. A phosphate arsenoriboside was identified in mullet intestine (4%) and from all tissues of luderick (1–6%) except muscle. Pelagic carnivore fish species are exposed mainly to arsenobetaine through their diet and accumulate the majority of arsenic in tissues as this compound. Detritivore and herbivore fish species also accumulate arsenobetaine from their diet, with quantities of other inorganic and organic arsenic compounds. These compounds may result from ingestion of food and sediment, degradation products (e.g. arsenobetaine to trimethylarsine oxide; arsenoribosides to dimethylarsinic acid), conversion (e.g. arsenate to dimethylarsinic acid and trimethylarsine oxide by bacterial action in digestive tissues) and/or in situ enzymatic activity in liver tissue. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

9.
Membrane proteins engage in a variety of contacts with their surrounding lipids, but distinguishing between specifically bound lipids, and non‐specific, annular interactions is a challenging problem. Applying native mass spectrometry to three membrane protein complexes with different lipid‐binding properties, we explore the ability of detergents to compete with lipids bound in different environments. We show that lipids in annular positions on the presenilin homologue protease are subject to constant exchange with detergent. By contrast, detergent‐resistant lipids bound at the dimer interface in the leucine transporter show decreased koff rates in molecular dynamics simulations. Turning to the lipid flippase MurJ, we find that addition of the natural substrate lipid‐II results in the formation of a 1:1 protein–lipid complex, where the lipid cannot be displaced by detergent from the highly protected active site. In summary, we distinguish annular from non‐annular lipids based on their exchange rates in solution.  相似文献   

10.
There are no reports in scientific literature on arsenic species in human saliva after seaweed exposure. The present article reports for the first time the regular excretion patterns of arsenic in the saliva of volunteers with one-time ingestion of Chinese seaweed. Total arsenic and speciation analyses were carried out by high-performance liquid chromatography–inductively coupled plasma–mass spectrometry (HPLC-ICP-MS). Results show that the excretion time of total arsenic in saliva is a trifle earlier than that in urine, total arsenic in human saliva also shows a regular excretion pattern like that in urine within 72 h after exposure to seaweed. For speciation analysis, four species, including the major dimethylarsinic acid (DMA) species, were detected in urine prior to seaweed intake. Six species were detected in urine after seaweed ingestion, including DMA, methylarsonic acid (MMA), oxo-dimethylarsinoylethanol (oxo-DMAE), thio-dimethlyarsenoacetate (thio-DMAA), arsenite (AsIII) and arsenate (AsV). In saliva samples, three species were found before seaweed ingestion, with the major peak identified as AsIII. After consumption, the kinds of arsenic metabolites in saliva were less than those in urine. The major species was inorganic arsenic (iAs AsIII+AsV), followed by DMA, MMA and a trace amount of oxo-DMAE. Taken together, the present study suggests that saliva assay can be used as a potential tool for understanding the regular excretion pattern of total arsenic after seaweed ingestion. Whether or not it’s an efficient tool for assessing arsenic metabolites in humans exposed to seaweed requires further investigation.  相似文献   

11.
Response surface methodology was applied to optimize the parameters for microwave‐assisted extraction of six major inorganic and organic arsenic species (As(III), As(V), dimethyl arsenic acid, monomethyl arsenic acid, p‐arsanilic acid, and roxarsone) from chicken tissues, followed by detection using a high‐performance liquid chromatography with inductively coupled mass spectrometry detection method, which allows the simultaneous analysis of both inorganic and organic arsenic species in the extract in a single run. Effects of extraction medium, solution pH, liquid‐to‐solid ratio, and the temperature and time of microwave‐assisted extraction on the extraction of the targeted arsenic species were studied. The optimum microwave‐assisted extraction conditions were: 100 mg of chicken tissue, extracted by 5 mL of 22% v/v methanol, 90 mmol/L (NH4)2HPO4, and 0.07% v/v trifluoroacetic acid (with pH adjusted to 10.0 by ammonium hydroxide solution), ramping for 10 min to 71°C, and holding for 11 min. The method has good extraction performance for total arsenic in the spiked and nonspiked chicken tissues (104.0 ± 13.8% and 91.6 ± 7.8%, respectively), except for the ones with arsenic contents close to the quantitation limits. Limits of quantitation (S/N = 10) for As(III), As(V), dimethyl arsenic acid, monomethyl arsenic acid, p‐arsanilic acid, and roxarsone in chicken tissues using this method were 0.012, 0.058, 0.039, 0.061, 0.102, and 0.240 mg/kg (dry weight), respectively.  相似文献   

12.
The molecular structures, biosynthetic pathways and physiological functions of membrane lipids produced by organisms in the domain Archaea are poorly characterized as compared with that of counterparts in Bacteria and Eukaryota. Here we report on the use of high‐resolution shotgun lipidomics to characterize, for the first time, the lipid complement of the archaeon Sulfolobus islandicus. To support the identification of lipids in S. islandicus, we first compiled a database of ether lipid species previously ascribed to Archaea. Next, we analyzed the lipid complement of S. islandicus by high‐resolution Fourier transform mass spectrometry using an ion trap‐orbitrap mass spectrometer. This analysis identified five clusters of molecular ions that matched ether lipids in the database with sub‐ppm mass accuracy. To structurally characterize and validate the identities of the potential lipid species, we performed structural analysis using multistage activation on the ion trap‐orbitrap instrument as well as tandem mass analysis using a quadrupole time‐of‐flight machine. Our analysis identified four ether lipid species previously reported in Archaea, and one ether lipid species that had not been described before. This uncharacterized lipid species features two head group structures composed of a trisaccharide residue carrying an uncommon sulfono group (?SO3) and an inositol phosphate group. Both head groups are linked to a glycerol dialkyl glycerol tetraether core structure having isoprenoid chains with a total of 80 carbon atoms and 4 cyclopentane moieties. The shotgun lipidomics approach deployed here defines a novel workflow for exploratory lipid profiling of Archaea. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
A method using sequential supercritical fluid extraction (SFE) and enzymatic transesterification has been developed for the rapid determination of total nutritional fat content in meat samples. SFE conditions of 12.16 MPa and 50°C were utilized to extract lipid species from the sample matrix. The enzymatic transesterification of the lipids by methanol was catalyzed by an immobilized lipase isolated from Candida antarctica. Conversion of the triglycerides to fatty acid methyl esters was monitored by supercritical fluid chromatography, while the fatty acid content of the extract was determined by capillary gas chromatography (GC). Total fat, saturated fat and monounsaturated fat contents were calculated from the GC data and compared to values from traditional extraction and lipid determination methods. Both off-line SFE and automated SFE followed by on-line GC analysis using two different instruments were utilized in this study. The enzymatic-based SFE method gave comparable results to the organic solvent extraction-based method followed by conventional BF3-catalyzed esterification.  相似文献   

14.
Levels of total arsenic and arsenic species were determined in fungi collected from Yellowknife, NWT, Canada, an area that has been affected by past mining activities and elevated arsenic levels. Lichens (belonging to Cladonia and Cladina genera), as well as the mushrooms Coprinus comatus, Paxillus involutus, Psathyrella candolleana and Leccinum scabrum, were studied for the first time. Most of the fungi contained elevated arsenic levels with respect to data found in the literature for background levels. Minor amounts of arsenobetaine were found in all lichen samples. The major water‐soluble arsenic species in the fungi were inorganic arsenic for lichens and Psathyrella candolleana, arsenobetaine for Lycoperdon pyriforme and Coprinus comatus, and dimethylarsenate for Paxillus involutus and Leccinum scabrum. A large proportion of water‐soluble arsenic in Paxillus involutus occurred as an unknown compound, which did not co‐chromatograph with any of the available standard arsenic compounds. Low proportions of water‐soluble arsenic species (made evident by low extraction efficiencies) were observed in the majority of fungi studied. Arsenic that is not extracted may be bound to lipids, cell components or proteins, or might exist on the surface of the fungus as minerals. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

15.
Semen descurainiae oil (SDO) is an important traditional Chinese medicine that was recently discovered to have the function of reducing blood lipids. Metabolomics analyses of plasma, liver and kidney in rats were performed using 1H‐NMR and LC–MS to illuminate the lower blood lipid concentration effect of SDO, and niacin was considered as the active control. The measure of total cholesterol (TC) and low‐density‐lipoprotein cholesterol (LDL‐C) in plasma showed that SDO treatment decreased significantly the content of TC and LDL‐C. An orthogonal partial least squares–discriminant analysis approach was applied to identify the different metabolic profiles of plasma, liver and kidney in rats and to detect related potential biomarkers. The results suggested that the metabolic profiles of the control group and hyperlipidemia group showed significant difference and the SDO and niacin group had effective anti‐hyperlipidemia function. The biomarkers primarily concern lipid metabolism, amino acid metabolism and glycometabolism, and the change in biomarkers indicated that hyperlipidemia could cause the unbalance of these metabolic pathways in vivo. SDO reduced blood lipids by repairing amino acid and lipid metabolism.  相似文献   

16.
Polymeric nanoreactors (NRs) have distinct advantages to improve chemical reaction efficiency, but the in vivo applications are limited by lack of tissue‐specificity. Herein, novel glucose oxidase (GOD)‐loaded therapeutic vesicular NRs (thera NR) are constructed based on a diblock copolymer containing poly(ethylene glycol) (PEG) and copolymerized phenylboronic ester or piperidine‐functionalized methacrylate (P(PBEM‐co ‐PEM)). Upon systemic injection, thera NR are inactive in normal tissues. At a tumor site, thera NR are specifically activated by the tumor acidity via improved permeability of the membranes. Hydrogen peroxide (H2O2) production by the catalysis of GOD in thera NR increases tumor oxidative stress significantly. Meanwhile, high levels of H2O2 induce self‐destruction of thera NR releasing quinone methide (QM) to deplete glutathione and suppress the antioxidant ability of cancer cells. Finally, thera NR efficiently kill cancer cells and ablate tumors via the synergistic effect.  相似文献   

17.
Forty-eight species of seaweeds from Japanese waters were screened for the valuable polyunsaturated fatty acids eicosapentaenoic acid (EPA). The eight species that contained the highest levels of these compounds were analyzed in detail. Of all species tested the red alga Pachymeniopsis lanceolata contained the highest EPA concentration, and it was present as both the free and bound forms. EPA constituted 38.7% of total fatty acids, and polar lipids were the main constituent of the total lipids in P. lanceolata. EPA was obtained from the marine algae P. lanceolata by enzymatic hydrolysis of the total lipids extract using phospholipase A2(PLA2). The release of EPA reached a plateau after 10 min of enzymatic treatment. These results suggest that P. lanceolata is a useful natural source of EPA and that PLA2 treatment is a convenient method for obtaining EPA from the red alga.  相似文献   

18.
The brain is believed to be particularly vulnerable to arsenic due to its high oxygen consumption rate and high level of polyunsaturated fatty acids and relatively high rate of oxygen free radical generate without commensurable level of arsenic. Hence, in the present work an attempt is made to study the changes in the biochemical contents in the brain tissues of edible fish Labeo rohita due to arsenic intoxication using Fourier Transform Infrared (FT-IR) spectroscopy. FT-IR spectra reveal significant differences in absorbance intensities between the control and arsenic intoxicated brain tissues, reflecting an alteration on the major biochemical constituents, such as lipids, proteins and nucleic acids of the brain tissues of L. rohita due to arsenic intoxication. Further, the administration of antidote DMSA improves the protein and lipid contents significantly in the brain tissues when compared to arsenic intoxicated tissues. The decrease in α-helix structure due to arsenic intoxication might be responsible for the increase in β-sheet secondary structures, which is consistent with the mechanism of β-sheet formation.  相似文献   

19.
A method of high performance liquid chromatography with a Hamilton PRP‐X100 ion‐exchange column (250 × 4.1 mm id, 10 μm) coupled to inductively coupled plasma mass spectrometry was employed to generate a full concentration–time profile of arsenic speciation after oral administration. The results exhibited good linearity and revealed that, in the pills, the average arsenic concentration was 10105.4 ± 380.7 mg/kg, and in the water extraction solution, the inorganic As(III) and As(V) concentrations were 220.1 ± 12.6 and 45.5 ± 2.3 mg/kg, respectively. No trace of monomethyl arsenic acid was detected in any of the plasma samples. We then successfully applied the established methodology to examine the pharmacokinetics of arsenic speciation. The resulting data revealed that, after oral administration in rats, the plasma concentration of each arsenic species reached Cmax shortly after initial dosing, and that the distribution and elimination of As(V) was faster than that of As(III) and dimethyl arsenic acid. Additionally, the t1/2 values of As(V), As(III), and dimethyl arsenic acid were 3.4 ± 1.6, 14.3 ± 4.0, and 19.9 ± 1.6 h, respectively. This study provides references for the determination of arsenic speciation in mineral‐containing medicines and could serve as a useful tool in measuring the true toxicity in traditional medicines that contain them.  相似文献   

20.
In soft matter, thermal energy causes molecules to continuously translate and rotate, even in crowded environments, thereby impacting the spatial organization and function of most molecular assemblies, such as lipid membranes. Directly measuring the orientation and spatial organization of large collections (>3000 molecules μm?2) of single molecules with nanoscale resolution remains elusive. In this paper, we utilize SMOLM, single‐molecule orientation localization microscopy, to directly measure the orientation spectra (3D orientation plus “wobble”) of lipophilic probes transiently bound to lipid membranes, revealing that Nile red's (NR) orientation spectra are extremely sensitive to membrane chemical composition. SMOLM images resolve nanodomains and enzyme‐induced compositional heterogeneity within membranes, where NR within liquid‐ordered vs. liquid‐disordered domains shows a ≈4° difference in polar angle and a ≈0.3π sr difference in wobble angle. As a new type of imaging spectroscopy, SMOLM exposes the organizational and functional dynamics of lipid‐lipid, lipid‐protein, and lipid‐dye interactions with single‐molecule, nanoscale resolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号