首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The metalation of meso‐tetrakis(pentafluorophenyl)‐substituted [26]rubyrin has been explored with Group 9 metal salts (RhI, CoII, IrIII), affording a Hückel aromatic [26]rubyrin–bis‐RhI complex with a highly curved gable‐like structure, a Hückel antiaromatic [24]rubyrin–bis‐CoII complex that displays intramolecular antiferromagnetic coupling between the two CoII ions (J=?4.5 cm?1), and two Cp*‐capped IrIII complexes; in one, the iridium metal sits on the [26]rubyrin frame with two Ir?N bonds, whereas the other has an additional Ir?C bond, although both IrIII complexes display moderate aromatic character. This work demonstrates characteristic metalation abilities of this [26]rubyrin toward Group 9 metals.  相似文献   

2.
3.
Trifluoroacetic acid‐catalyzed condensation of pyrrole with electron‐deficient and sterically hindered 3,5‐bis(trifluoromethyl)benzaldehyde results in the unexpected production of a series of meso‐3,5‐bis(trifluoromethyl)phenyl‐substituted expanded porphyrins including [22]sapphyrin 2 , N‐fused [22]pentaphyrin 3 , [26]hexaphyrin 4 , and intact [32]heptaphyrin 5 together with the conventional 5,10,15,20‐tetrakis(3,5‐bis(trifluoromethyl)phenyl)porphyrin 1 . These expanded porphyrins are characterized by mass spectrometry, 1H NMR spectroscopy, UV/Vis/NIR absorption spectroscopy, and fluorescence spectroscopy. The optical and electrochemical measurements reveal a decrease in the HOMO–LUMO gap with increasing size of the conjugated macrocycles, and in accordance with the trend, the deactivation of the excited singlet state to the ground state is enhanced.  相似文献   

4.
5.
6.
Effective peripheral fabrication methods of meso‐aryl‐substituted subporphyrins were explored for the first time. Hexabrominated subporphyrins 2 were prepared quantitatively from the bromination of subporphyrins 1 with bromine. Hexaphenylated subporphyrins 3 and hexaethynylated subporphyrins 4 and 5 were synthesized by Suzuki–Miyaura coupling and Stille coupling, respectively, in good yields. X‐ray crystal structures of 2 b , 3 b , 4 b , and 5 a revealed preservation of the bowl‐shaped bent structures with bowl depths similar to that of 1 . Hexaethynylated subporphyrins exhibit large two‐photon‐absorption cross‐sections due to effective delocalization of the conjugated network to the ethynyl substituents.  相似文献   

7.
8.
Meso‐substituted A4‐porphyrins bearing 3,4,5‐trialkoxyphenyl substituents are efficiently synthesized and characterized. Porphyrins bearing twelve C10 and C11 alkyl chains turned out to be liquid at room temperature. The remaining porphyrins, bearing C8, C9, C12, and C18 alkyl chains, have low melting points and high solubility in nonpolar solvents. Their differential scanning calorimetry distinctly shows, in most cases, only one phase transition.  相似文献   

9.
A series of meso-trifluoromethyl-substituted expanded porphyrins, including N-fused [24]pentaphyrin 3, [28]hexaphyrin 4, [32]heptaphyrin 5, [46]decaphyrin 6, and [56]dodecaphyrin 7, were synthesized by means of an acid-catalyzed one-pot condensation reaction of 2-(2,2,2-trifluoro-1-hydroxyethyl)pyrrole (1) as the first examples bearing meso-alkyl substituents. Besides these products, porphyrin 2 and two calix[5]phyrins 8 and 9 were also obtained. [28]Hexaphyrin 4 was quantitatively oxidized to [26]hexaphyrin 14 with MnO(2). These expanded porphyrins have been characterized by mass spectrometry, (1)H and (19)F NMR spectroscopy, and UV/Vis spectroscopy. The single-crystal structures have been determined for 3, 4, 6, 7, and 14. The N-fused [24]pentaphyrin 3 displays a distorted structure containing a tricyclic fused moiety that is similar to those of meso-aryl-substituted counterparts, whereas 8 and 9 are indicated to take roughly planar conformations with an inverted pyrrole opposite to the sp(3)-hybridized meso-carbon atom. Both [28]- and [26]hexaphyrins 4 and 14 have figure-of-eight structures. Solid-state structures of the decaphyrin 6 and dodecaphyrin 7 are remarkable, exhibiting a crescent conformation and an intramolecular two-pitch helical conformation, respectively.  相似文献   

10.
Donor–acceptor systems based on subporphyrins with nitro and amino substituents at meta and para positions of the meso‐phenyl groups were synthesized and their photophysical properties have been systematically investigated. These molecules show two types of charge‐transfer interactions, that is, from center to periphery and periphery to center depending on the peripheral substitution, in which the subporphyrin moiety plays a dual role as both donor and acceptor. Based on the solvent‐polarity‐dependent photophysical properties, we have shown that the fluorescence emission of para isomers originates from the solvatochromic, dipolar, symmetry‐broken, and relaxed excited states, whereas the non‐solvatochromic fluorescence of meta isomers is of the octupolar type with false symmetry breaking. The restricted meso‐(4‐aminophenyl) rotation at low temperature prevents the intramolecular charge‐transfer (ICT)‐forming process. The two‐photon absorption (TPA) cross‐section values were determined by photoexcitation at 800 nm in nonpolar toluene and polar acetonitrile solvents to see the effect of ICT on the TPA processes. The large enhancement in the TPA cross‐section value of approximately 3200 GM (1 GM=10?50 cm4 s photon?1) with donor–acceptor substitution has been attributed to the octupolar effect and ICT interactions. A correlation was found between the electron‐donating/‐withdrawing abilities of the peripheral groups and the TPA cross‐section values, that is, p‐aminophenyl>m‐aminophenyl>nitrophenyl. The increased stability of octupolar ICT interactions in highly polar solvents enhances the TPA cross‐section value by a factor of approximately 2 and 4, respectively, for p‐amino‐ and m‐nitrophenyl‐substituted subporphyrins. On the other hand, the stabilization of the symmetry‐broken, dipolar ICT state gives rise to a negligible impact on the TPA processes.  相似文献   

11.
Ruthenocene‐type hybrid complexes with N‐fused porphyrinato ligands, [Ru(NFp)Cp] (NFp=N‐fused porphyrin, Cp=cyclopentadienyl), have been prepared and characterized by NMR and UV/Vis/NIR spectroscopy, cyclovoltammetry, and X‐ray crystallography. [Ru(NFp)Cp] is a common low‐spin ruthenium(II) complex and shows strong aromaticity. The Ru–Cp distance (1.833 Å) in [Ru(NFp)Cp] is comparable to that in [RuCp2] (1.840 Å). DFT calculations on [Ru(NFp)Cp] showed the unequivocal contribution of the RuCp moiety as well as the NFp moiety to both the HOMO and LUMO, constructing a three‐dimensional d–π conjugated system. The HOMO–LUMO gaps of [Ru(NFp)Cp] are insensitive to the substituents on the NFp ligand, which is illustrated spectroscopically as well as theoretically. This is in sharp contrast to the ligand precursor, the N‐fused porphyrin, in which the HOMO–LUMO gap is affected by substituents in a similar manner to standard porphyrins and related macrocycles.  相似文献   

12.
13.
meso-Aryl-substituted pentaphyrins were isolated in the modified Rothemund-Lindsey porphyrin synthesis as a 22-pi-electron N-fused pentaphyrin ([22]NFP5) and a 24-pi-electron N-fused pentaphyrin ([24]NFP5), which were reversibly interconvertible by means of two-electron reduction with NaBH4 or two-electron oxidation with dichlorodicyanobenzoquinone (DDQ). Judging from 1H NMR data, [22]NFP5 is aromatic and possesses a diatropic ring current, while [24]NFP5 exhibits partial anti-aromatic character. Metalation of [22]NFP5 1 with a rhodium(I) salt led to isolation of rhodium complexes 9 and 10, whose structures were unambiguously characterized by X-ray diffraction analyses and were assigned as conjugated 24-pi and 22-pi electronic systems, respectively. In the rhodium(I) metalation of 1, the complex 9 was a major product at 20 degrees C, but the complex 10 became preferential at 55 degrees C. Upon treatment with DDQ, compound 9 was converted to 10 with an unprecedented rearrangement of the rhodium atom.  相似文献   

14.
15.
5,10,15‐Tris(pentafluorophenyl)tetrapyrromethane was efficiently prepared through a route involving stepwise diaroylation of 5‐pentafluorophenyldipyrromethane. A2B6‐type [36]octaphyrins were prepared by the cross condensation of the tetrapyrromethane with aryl aldehydes in moderate yields. A2B6‐type [36]octaphyrins bearing 2,4,6‐trifluorophenyl, 2,6‐dichlorophenyl, and phenyl substituents underwent CuII‐metalation‐induced fragmentation to give two molecules of AB3‐type CuII porphyrins. A2B6‐type [36]octaphyrin bearing 3‐thienyl substituents underwent thermal N‐thienyl fusion reactions to provide a modestly aromatic [38]octaphyrin, which, upon treatment with MnO2, underwent further N‐thienyl fusion and subsequent oxidation to give a nonaromatic doubly N‐thienyl fused [36]octaphyrin.  相似文献   

16.
17.
18.
19.
20.
meso-Aryl substituted rubyrin ([26]hexaphyrin(1.1.0.1.1.0)) 2 and a series of rubyrin-type large expanded porphyrins were obtained from a facile one-pot oxidative coupling reaction of meso-pentafluorophenyl substituted tripyrrane 1. The structures of two of the resulting products were determined by single-crystal X-ray diffraction analysis. Whereas [52]dodecaphyrin(1.1.0.1.1.0.1.1.0.1.1.0) 4 takes a symmetric helical conformation, the larger species, [62]pentadecaphyrin(1.1.0.1.1.0.1.1.0.1.1.0.1.1.0) 5, adopts a nonsymmetric distorted conformation in the solid state that contains an intramolecular helical structure. The ability of rubyrin 2 to act as an anion receptor in its diprotonated form (2(.)2H(+)) was demonstrated in methanolic solutions. Oxidation of 2 with MnO(2) gave [24]rubyrin 6, a species that displays antiaromatic characteristics. [26]Rubyrin 2 and [24]rubyrin 6 both underwent metallation when reacted with Zn(OAc)(2) to give the corresponding bis-zinc(II) complexes 7 and 8 quantitatively without engendering a change in the oxidation state of the ligands. As a result, complexes 7 and 8 exhibit aromatic and antiaromatic character, respectively. NICS calculation on these compounds also supported aromaticity of 2 and 7, and antiaromaticity of 6 and 8.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号