首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of donor–acceptor [2]‐, [3]‐, and [4]rotaxanes and self‐complexes ([1]rotaxanes) have been synthesized by a threading‐followed‐by‐stoppering approach, in which the precursor pseudorotaxanes are fixed by using CuI‐catalyzed Huisgen 1,3‐dipolar cycloaddition to attach the required stoppers. This alternative approach to forming rotaxanes of the donor–acceptor type, in which the donor is a 1,5‐dioxynaphthalene unit and the acceptor is the tetracationic cyclophane cyclobis(paraquat‐p‐phenylene), proceeds with enhanced yields relative to the tried and tested synthetic strategies, which involve the clipping of the cyclophane around a preformed dumbbell containing π‐electron‐donating recognition sites. The new synthetic approach is amenable to application to highly convergent sequences. To extend the scope of this reaction, we constructed [2]rotaxanes in which one of the phenylene rings of the tetracationic cyclophane is perfluorinated, a feature which significantly weakens its association with π‐electron‐rich guests. The activation barrier for the shuttling of the cyclophane over a spacer containing two triazole rings was determined to be (15.5±0.1) kcal mol?1 for a degenerate two‐station [2]rotaxane, a value similar to that previously measured for analogous degenerate compounds containing aromatic or ethylene glycol spacers. The triazole rings do not seem to perturb the shuttling process significantly; this property bodes well for their future incorporation into bistable molecular switches.  相似文献   

2.
Five donor–acceptor oligorotaxanes made up of dumbbells composed of tetraethylene glycol chains, interspersed with three and five 1,5‐dioxynaphthalene units, and terminated by 2,6‐diisopropylphenoxy stoppers, have been prepared by the threading of discrete numbers of cyclobis(paraquat‐p‐phenylene) rings, followed by a kinetically controlled stoppering protocol that relies on click chemistry. The well‐known copper(I)‐catalyzed alkyne–azide cycloaddition between azide functions placed at the ends of the polyether chains and alkyne‐bearing stopper precursors was employed during the final kinetically controlled template‐directed synthesis of the five oligorotaxanes, which were characterized subsequently by 1H NMR spectroscopy at low temperature (233 K) in deuterated acetonitrile. The secondary structures, as well as the conformations, of the five oligorotaxanes were unraveled by spectroscopic comparison with the dumbbell and ring components. By focusing attention on the changes in chemical shifts of some key probe protons, obtained from a wide range of low‐temperature spectra, a picture emerges of a high degree of folding within the thread protons of the dumbbells of four of the five oligorotaxanes—the fifth oligorotaxane represents a control compound in effect—brought about by a combination of C? H???O and π–π stacking interactions between the π‐electron‐deficient bipyridinium units in the rings and the π‐electron‐rich 1,5‐dioxynaphthalene units and polyether chains in the dumbbells. The secondary structures of a foldamer‐like nature have received further support from a solid‐state superstructure of a related [3]pseudorotaxane and density functional calculations performed thereon.  相似文献   

3.
We report on the kinetics and ground‐state thermodynamics associated with electrochemically driven molecular mechanical switching of three bistable [2]rotaxanes in acetonitrile solution, polymer electrolyte gels, and molecular‐switch tunnel junctions (MSTJs). For all rotaxanes a π‐electron‐deficient cyclobis(paraquat‐p‐phenylene) (CBPQT4+) ring component encircles one of two recognition sites within a dumbbell component. Two rotaxanes (RATTF4+ and RTTF4+) contain tetrathiafulvalene (TTF) and 1,5‐dioxynaphthalene (DNP) recognition units, but different hydrophilic stoppers. For these rotaxanes, the CBPQT4+ ring encircles predominantly (>90 %) the TTF unit at equilibrium, and this equilibrium is relatively temperature independent. In the third rotaxane (RBPTTF4+), the TTF unit is replaced by a π‐extended analogue (a bispyrrolotetrathiafulvalene (BPTTF) unit), and the CBPQT4+ ring encircles almost equally both recognition sites at equilibrium. This equilibrium exhibits strong temperature dependence. These thermodynamic differences were rationalized by reference to binding constants obtained by isothermal titration calorimetry for the complexation of model guests by the CBPQT4+ host in acetonitrile. For all bistable rotaxanes, oxidation of the TTF (BPTTF) unit is accompanied by movement of the CBPQT4+ ring to the DNP site. Reduction back to TTF0 (BPTTF0) is followed by relaxation to the equilibrium distribution of translational isomers. The relaxation kinetics are strongly environmentally dependent, yet consistent with a single electromechanical‐switching mechanism in acetonitrile, polymer electrolyte gels, and MSTJs. The ground‐state equilibrium properties of all three bistable [2]rotaxanes were reflective of molecular structure in all environments. These results provide direct evidence for the control by molecular structure of the electronic properties exhibited by the MSTJs.  相似文献   

4.
The interaction between tetrathiafulvalene and tetracation cyclobis(paraquat‐p‐phenylene) fragments—the key elements of many rotaxane systems—was investigated theoretically by using ab‐initio second‐order perturbation methods. In addition to the inclusion complex observed in the solid state, a thermodynamically stable “exterior” complex was identified. Calculation of the UV/Vis spectra for the inclusion and the exterior complexes indicated that the charge‐transfer band that is often used to predict the formation of the inclusion complexes in solution is, in reality, due to the exterior mode of complexation. These results suggest that UV/Vis spectroscopy is not a reliable method for assigning the complexation modes in TTF:BB4+ rotaxanes and related systems.  相似文献   

5.
The ability to control the kinetic barriers governing the relative motions of the components in mechanically interlocked molecules is important for future applications of these compounds in molecular electronic devices. In this Full Paper, we demonstrate that bipyridinium (BIPY2+) dications fulfill the role as effective electrostatic barriers for controlling the shuttling and threading behavior for rotaxanes and pseudorotaxanes in aqueous environments. A degenerate [2]rotaxane, composed of two 1,5‐dioxynaphthalene (DNP) units flanking a central BIPY2+ unit in the dumbbell component and encircled by the cyclobis(paraquat‐p‐phenylene) (CBPQT4+) tetracationic cyclophane, has been synthesized employing a threading‐followed‐by‐stoppering approach. Variable‐temperature 1H NMR spectroscopy reveals that the barrier to shuttling of the CBPQT4+ ring over the central BIPY2+ unit is in excess of 17 kcal mol?1 at 343 K. Further information about the nature of the BIPY2+ unit as an electrostatic barrier was gleaned from related supramolecular systems, utilizing two threads composed of either two DNP units flanking a central BIPY2+ moiety or a central DNP unit flanked by a BIPY2+ moiety. The threading and dethreading processes of the CBPQT4+ ring with these compounds, which were investigated by spectrophotometric techniques, reveal that the BIPY2+ unit is responsible for affecting both the thermodynamics and kinetics of pseudorotaxane formation by means of an intramolecular self‐folding (through donor–acceptor interactions with the DNP unit), in addition to Coulombic repulsion. In particular, the free energy barrier to threading (Δ${G{{{\ne}\hfill \atop {\rm f}\hfill}}}The ability to control the kinetic barriers governing the relative motions of the components in mechanically interlocked molecules is important for future applications of these compounds in molecular electronic devices. In this Full Paper, we demonstrate that bipyridinium (BIPY(2+)) dications fulfill the role as effective electrostatic barriers for controlling the shuttling and threading behavior for rotaxanes and pseudorotaxanes in aqueous environments. A degenerate [2]rotaxane, composed of two 1,5-dioxynaphthalene (DNP) units flanking a central BIPY(2+) unit in the dumbbell component and encircled by the cyclobis(paraquat-p-phenylene) (CBPQT(4+)) tetracationic cyclophane, has been synthesized employing a threading-followed-by-stoppering approach. Variable-temperature (1)H?NMR spectroscopy reveals that the barrier to shuttling of the CBPQT(4+) ring over the central BIPY(2+) unit is in excess of 17 kcal mol(-1) at 343 K. Further information about the nature of the BIPY(2+) unit as an electrostatic barrier was gleaned from related supramolecular systems, utilizing two threads composed of either two DNP units flanking a central BIPY(2+) moiety or a central DNP unit flanked by a BIPY(2+) moiety. The threading and dethreading processes of the CBPQT(4+) ring with these compounds, which were investigated by spectrophotometric techniques, reveal that the BIPY(2+) unit is responsible for affecting both the thermodynamics and kinetics of pseudorotaxane formation by means of an intramolecular self-folding (through donor-acceptor interactions with the DNP unit), in addition to Coulombic repulsion. In particular, the free energy barrier to threading (ΔG(f)(++)) of the CBPQT(4+) for the case of the thread composed of a DNP flanked by two BIPY(2+) units was found to be as high as 21.7 kcal mol(-1) at room temperature. These results demonstrate that we can effectively employ the BIPY(2+) unit to serve as electrostatic barriers in water in order to gain control over the motions of the CBPQT(4+) ring in both mechanically interlocked and supramolecular systems.  相似文献   

6.
The preparation and dynamic behavior of two functionally rigid and degenerate [2]rotaxanes ( 1⋅ 4 PF6 and 2⋅ 4 PF6) in which a π-electron deficient tetracationic cyclophane, cyclobis(paraquat-p-phenylene) (CBPQT4+) ring, shuttles back and forth between two π-electron-rich naphthalene (NP) stations by making the passage along an ethynyl-phenylene-(PH)-ethynyl or butadiyne rod, are described. The [2]rotaxanes were synthesized by using the clipping approach to template-directed synthesis, and were characterized by NMR spectroscopic and mass spectrometric analyses. 1H NMR spectra of both [2]rotaxanes show evidence for the formation of mechanically interlocked structures, resulting in the upfield shifts of the resonances for key protons on the dumbbell-shaped components. In particular, the signals for the peri protons on the NP units in the dumbbell-shaped components experienced significant upfield shifts at low temperatures, just as has been observed in the flexible [2]rotaxanes. Interestingly, the resonances for the same protons did not exhibit a significant upfield shift at 298 K, but rather only a modest shift. This phenomenon arises from the much reduced binding of the ethynyl-NP unit compared to the 1,5-dioxy-NP unit. This effect, in turn, increases the shuttling rate when compared to the 1,5-dioxy-NP-based rotaxane systems investigated previously. The kinetic and thermodynamic data of the shuttling behavior of the CBPQT4+ ring between the NP units were obtained by variable-temperature NMR spectroscopy and using the coalescence method to calculate the free energies of activation (ΔGc) of 9.6 and 10.3 kcal mol−1 for 1⋅ 4 PF6 and 2⋅ 4 PF6, respectively, probed by using the rotaxane's α-bipyridinium protons. The solid-state structure of the free dumbbell-shaped compound ( 3 ) shows the fully rigid ethynyl-PH-ethynyl linker with a length (8.1 Å) twice as long as that (3.8 Å) of the butadiyne linker. Full-atomistic simulations were carried out with the DREIDING force field (FF) to probe the degenerate molecular shuttling processes, and afforded shuttling energy barriers (ΔG=10.4 kcal mol−1 for 1⋅ 4 PF6 and 2⋅ 4 PF6) that are in good agreement with the experimental values (ΔGc=9.6 and 10.3 kcal mol−1 for 1⋅ 4 PF6 and 2⋅ 4 PF6, respectively, probed by using their α-bipyridinium protons).  相似文献   

7.
Two [2]rotaxanes and a [2]pseudorotaxane containing 1,5-dioxynaphthalene recognition sites located in the middle of their dumbbell and thread components, respectively, and encircled by single cyclobis(paraquat-p-phenylene) rings have been synthesized under template control and their solid-state (super)structures have been solved. The investigations revealed that the stoppers on the dumbbell components, the solvents, and the counterions can affect the conformations adopted by the [2]rotaxanes and [2]pseudorotaxane in the solid state.  相似文献   

8.
The self-assembly of a number of rotaxanes, pseudorotaxanes, and a pseudopolyrotaxane based on the π-electron deficient cyclobis(paraquat-p-phenylene) and threads and dumbbell components composed of π-electron rich hydroquinone rings incorporated symmetrically within polyether chains terminated in the case of the rotaxanes by adamantoyl stoppers.  相似文献   

9.
Six different degenerate [2]rotaxanes were synthesized and characterized. The rotaxanes contained either two tetrathiafulvalene (TTF) units or two 1,5-dioxynaphthalene (DNP) ring systems, both of which serve as recognition sites for a cyclobis(paraquat-p-phenylene) (CBPQT4+) ring. Three different spacer units were incorporated into the dumbbell components of the [2]rotaxanes between the recognition sites. They include a polyether chain, a terphenyl unit, and a diphenyl ether linker, all of which were investigated in order to probe the effect of the spacers on the rate of the shuttling process. Data from dynamic 1H NMR spectroscopy revealed a relatively small difference in the DeltaG++ values for the shuttling process in the [2]rotaxanes containing the three different spacers, in contrast to a large difference between the TTF-containing rotaxanes (18 kcal mol(-1)) and the DNP-containing rotaxanes (15 kcal mol(-1)). This 3 kcal mol(-1) difference is predominantly a result of a ground-state effect, reflecting the much stronger binding of TTF units to the CBPQT4+ ring in comparison with DNP ring systems. An examination of the enthalpic (DeltaH++) and entropic (DeltaS++) components for the shuttling process in the DNP-containing rotaxanes revealed significant differences between the three spacers, a property which could be important in designing new molecules for incorporation into molecular electronic and nanoelectromechanical (NEMs) devices.  相似文献   

10.
A synthetic approach to the preparation of [2]rotaxanes (1-5·6PF(6)) incorporating bispyridinium derivatives and two 1,5-dioxynaphthalene (DNP) units situated in the rod portions of their dumbbell components that are encircled by a single cyclobis(paraquat-p-phenylene) tetracationic (CBPQT(4+)) ring has been developed. Since the π-electron-deficient bispyridinium units are introduced into the dumbbell components of the [2]rotaxanes 1-5·6PF(6), there are Coulombic charge-charge repulsions between these dicationic units and the CBPQT(4+) ring in the [2]rotaxanes. Thus, the CBPQT(4+) rings in the degenerate [2]rotaxanes exhibit slow shuttling between two DNP recognition sites on the (1)H NMR time-scale on account of the electrostatic barrier posed by the bispyridinium units, as demonstrated by variable-temperature (1)H NMR spectroscopy. Electrochemical experiments carried out on the [2]rotaxanes 1·6PF(6) and 2·6PF(6) indicate that the one-electron reduced bipyridinium radical cation in the dumbbell components of the [2]rotaxanes serves as an additional recognition site for the two-electron reduced CBPQT(2(˙+)) diradical cationic ring. Under appropriate conditions, the ring components in the degenerate rotaxanes 1·6PF(6) and 2·6PF(6) can shuttle along the recognition sites--two DNP units and one-electron reduced bipyridinium radical cation--under redox control.  相似文献   

11.
A color change from purple to green takes place on addition of tetrathiafulvalene (TTF) to the macrobicyclic receptor 1 4+, which is composed of a cyclobis(paraquat-p-phenylene) tetracation that shares one of its paraphenylene rings with a 1,5-naphthoparaphenylene-[36]crown-10 macrocycle. The TTF molecule forces the macrobicycle to turn inside out (see schematic drawing below) and displaces the self-complexed 1,5-dioxynaphthalene ring system from the center of the tetracationic cyclophane.  相似文献   

12.
Hydrogen bonded arylamide foldamers have been introduced in switchable pseudo[2]rotaxanes and [2]rotaxanes, which also include a cyclobisparaquat(p-phenylene) (CBPQT4+) ring and a ‘dumbbell’ containing tetrathiafulvalene (TTF) and 1,5-dioxynaphthalene (DNP, for rotaxanes). The foldamer size changes through folding and unfolding serve as a steric handle to modulate the mechanical movement of the CBPQT4+ ring along the dumbbell of the pseudo[2]rotaxanes and [2]rotaxanes. By varying the number of the repeating units in the foldamer, the kinetics of the solvent-dependent slippage/deslippage of pseudo[2]rotaxanes and the switching of the ring between TTF and DNP of the [2]rotoxanes can be tuned remarkably, with the time scope ranging from several minutes to several days, in twelve solvents of varying polarity, which have been confirmed by the 1H NMR, UV–vis spectroscopy, and cyclic voltammogram experiments.  相似文献   

13.
A new crownophane containing both 2,7-dioxyfluorenone and 1,5-dioxynaphthalene moieties bridged by triethylene glycol units has been synthesized and used as a highly efficient template for the preparation of the first fluorenone-containing [2]catenane incorporating a cyclobis(paraquat-p-phenylene) tetracation as a second macrocyclic component.  相似文献   

14.
Cellulose nanocrystals (CNCs) spontaneously assemble into gels when mixed with a polyionic organic or inorganic salt. Here, we have used this ion‐induced gelation strategy to create functional CNC gels with a rigid tetracationic macrocycle, cyclobis(paraquat‐p‐phenylene) ( CBPQT 4+). Addition of [ CBPQT ]Cl4 to CNCs causes gelation and embeds an active host inside the material. The fabricated CNC gels can reversibly absorb guest molecules from solution then undergo molecular recognition processes that create colorful host–guest complexes. These materials have been implemented in gel chromatography (for guest exchange and separation), and as elements to encode 2‐ and 3‐dimensional patterns. We anticipate that this concept might be extended to design a set of responsive and selective gel‐like materials functioning as, for instance, water‐pollutant scavengers, substrates for chiral separations, or molecular flasks.  相似文献   

15.
A series of amphiphilic bistable [2]rotaxanes--in which a ring-shaped component, the tetracationic cyclophane, cyclobis(paraquat-p-phenylene), has been assembled around two recognition sites, a tetrathia-fulvalene (TTF) unit and a 1,5-dioxynaphthalene (DNP) ring system, situated apart at different strategic locations within the central polyether section of an amphiphilic dumbbell component that is terminated by a hydrophobic tetraarylmethane-based stopper (near the TTF unit) at one end and by a hydrophilic tetraarylmethane-based stopper (near the DNP ring system) at the other end--has been designed and synthesized. The effects of systematic changes in the constitutions of the three ethylene glycol tails (diethylene or tetraethylene glycol) and end groups (hydroxyl or methoxyl functions) attached to the hydrophilic stoppers on Langmuir film balance and surface rheology experiments at 20 degreesC were examined to determine the monolayer stabilities and co-conformations of the [2] rotaxanes and their free dumbbell counterparts. These experiments allow us to propose a model for the rotaxane's structures at different surface pressures. All the [2]rotaxanes form stable Langmuir films. These films typically pass from a liquid-expanded region to a liquid-condensed region. The transition between the two regions was either directly observed or ascertained using film stability experiments. Film balance and surface rheology experiments showed that the addition of the tetracationic cyclophane component and hydroxyl end groups markedly increased the stabilities and viscoelasticity of the films.  相似文献   

16.
A range of covalently linked donor–acceptor compounds which contain 1) a hydroquinone (HQ) unit, 2) a 1,5‐dioxynaphthalene (DNP) ring system, or 3) a tetrathiafulvalene (TTF) unit as the π‐donor, and 4) cyclobis(paraquat‐p‐phenylene) (CBPQT4+) as the π‐accepting tetracationic cyclophane were prepared and shown to operate as simple molecular machines. The π‐donating arms can be included inside the cyclophane in an intramolecular fashion by virtue of stabilizing noncovalent bonding interactions. What amounts to self‐complexing/decomplexing equilibria were shown to be highly temperature dependent when the π‐donating arm contains either an HQ or DNP moiety. The thermodynamic parameters associated with the equilibria have been unraveled by using variable‐temperature 1H NMR spectroscopy. The negative ΔH° and ΔS° values account for the fact that the “uncomplexed” conformation becomes the dominant species, since the entropy gain associated with the decomplexation process overcomes the enthalpy loss resulting from the breaking of the donor–acceptor interactions. The arm's in‐and‐out movements with respect to the linked cyclophanes can be arrested by installing a bulky substituent at the end of the arm. In the case of compounds carrying a DNP ring system in their side arm, two diastereoisomeric, self‐complexing conformations are observed below 272 K in hexadeuterioacetone. By contrast, control over the TTF‐containing arm's movement is more or less ineffective through the thermally sensitive equilibrium although it can be realized by chemical and electrochemical ways as a result of TTF's excellent redox properties. Such self‐complexing compounds could find applications as thermo‐ and electroswitches. In addition, the thermochromism associated with the arm's movement could lead to some of the compounds finding uses as imaging and sensing materials.  相似文献   

17.
A [2]pseudorotaxane, based on a semi-dumbbell-shaped component containing asymmetrically substituted monopyrrolotetrathiafulvalene and 1,5-dioxynaphthalene recognition sites for encirclement by cyclobis(paraquat-p-phenylene) and with a "speed bump" in the form of a thiomethyl group situated between the two recognition sites, has been self-assembled. This supramolecular entity is a mixture in solution of two slowly interconverting [2]pseudorotaxanes, one of which is on the verge of being a [2]rotaxane at room temperature, allowing it to be isolated by employing flash column chromatography. These two [2]pseudorotaxanes were both characterized in solution by UV/Vis and (1)H NMR spectroscopies (1D and 2D) and also by differential pulse voltammetry. The spectroscopic and electrochemical data reveal that one of the complexes behaves wholly as a [2]pseudorotaxane, while the other has some [2]rotaxane character to it. The kinetics of the shuttling of cyclobis(paraquat-p-phenylene) between the monopyrrolotetrathiafulvalene and the 1,5-dioxynaphthalene recognition sites have been investigated at different temperatures. The shuttling processes, which are accompanied by detectable color changes, can be monitored using UV/Vis and (1)H NMR spectroscopies; the spectroscopic data have been employed in the determination of the rate constants, free energies of activation, enthalpies of activation, and the entropies of activation for the translation of cyclobis(paraquat-p-phenylene) between the two recognition sites.  相似文献   

18.
A mechanical switch in a [2]catenane , made up of a cyclobis(paraquat-p-phenylene) tetracation interlocked with a macrocyclic polyether containing a redox-active tetrathiafulvalene (TTF) unit and a 1,5-dioxynaphthalene ring system, can be thrown either chemically or electrochemically. The neutral TTF unit resides “inside” the tetracationic cyclophane in the reduced state and “alongside” it in the oxidized species (TTF+/ TTF2+). Switching between the reduced (I4+) and oxidized state (I5+(I6+)) is accompanied by a dramatic color change.  相似文献   

19.
The influences of different physical environments on the thermodynamics associated with one key step in the switching mechanism for a pair of bistable catenanes and a pair of bistable rotaxanes have been investigated systematically. The two bistable catenanes are comprised of a cyclobis(paraquat-p-phenylene) (CBPQT4+) ring, or its diazapyrenium-containing analogue, that are interlocked with a macrocyclic polyether component that incorporates the strong tetrathiafulvalene (TTF) donor unit and the weaker 1,5-dioxynaphthalene (DNP) donor unit. The two bistable rotaxanes are comprised of a CBPQT4+ ring, interlocked with a dumbbell component in which one incorporates TTF and DNP units, whereas the other incorporates a monopyrrolotetrathiafulvalene (MPTTF) donor and a DNP unit. Two consecutive cycles of a variable scan rate cyclic voltammogram (10-1500 mV s(-1)) performed on all of the bistable switches (approximately 1 mM) in MeCN electrolyte solutions (0.1 M tetrabutylammonium hexafluorophosphate) across a range of temperatures (258-303 K) were recorded in a temperature-controlled electrochemical cell. The second cycle showed different intensities of the two features that were observed in the first cycle when the cyclic voltammetry was recorded at fast scan rates and low temperatures. The first oxidation peak increases in intensity, concomitant with a decrease in the intensity of the second oxidation peak. This variation changed systematically with scan rate and temperature and has been assigned to the molecular mechanical movements within the catenanes and rotaxanes of the CBPQT4+ ring from the DNP to the TTF unit. The intensities of each peak were assigned to the populations of each co-conformation, and the scan-rate variation of each population was analyzed to obtain kinetic and thermodynamic data for the movement of the CBPQT4+ ring. The Gibbs free energy of activation at 298 K for the thermally activated movement was calculated to be 16.2 kcal mol(-1) for the rotaxane, and 16.7 and 19.2 kcal mol(-1) for the bipyridinium- and diazapyrenium-based bistable catenanes, respectively. These values differ from those obtained for the shuttling and circumrotational motions of degenerate rotaxanes and catenanes, respectively, indicating that the detailed chemical structure influences the rates of movement. In all cases, when the same bistable compounds were characterized in an electrolyte gel, the molecular mechanical motion slowed down significantly, concomitant with an increase in the activation barriers by more than 2 kcal mol(-1). Irrespective of the environment--solution, self-assembled monolayer or solid-state polymer gel--and of the molecular structure--rotaxane or catenane--a single and generic switching mechanism is observed for all bistable molecules.  相似文献   

20.
The promiscuous encapsulation of π‐electron‐rich guests by the π‐electron‐deficient host, cyclobis(paraquat‐p‐phenylene) (CBPQT4+), involves the formation of 1:1 inclusion complexes. One of the most intensely investigated charge‐transfer (CT) bands, assumed to result from inclusion of a guest molecule inside the cavity of CBPQT4+, is an emerald‐green band associated with the complexation of tetrathiafulvalene (TTF) and its derivatives. This interpretation was called into question recently in this journal based on theoretical gas‐phase calculations that reinterpreted this CT band in terms of an intermolecular side‐on interaction of TTF with one of the bipyridinium (BIPY2+) units of CBPQT4+, rather than the encapsulation of TTF inside the cavity of CBPQT4+. We carried out DFT calculations, including solvation, that reveal conclusively that the CT band emerging upon mixing TTF with CBPQT4+ arises from the formation of a 1:1 inclusion complex. In support of this conclusion, we have performed additional experiments on a [2]rotaxane in which a TTF unit, located in the middle of its short dumbbell, is prevented sterically from interacting with either one of the two BIPY2+ units of a CBPQT4+ ring residing on a separate [2]rotaxane in a side‐on fashion. This [2]rotaxane has similar UV/Vis and 1H NMR spectroscopic properties with those of 1:1 inclusion complexes of TTF and its derivatives with CBPQT4+. The [2]rotaxane exists as an equimolar mixture of cis‐ and trans‐isomers associated with the disubstituted TTF unit in its dumbbell component. Solid‐state structures were obtained for both isomers, validating the conclusion that the TTF unit, which gives rise to the CT band, resides inside CBPQT4+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号