首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 289 毫秒
1.
Preparation of the enantiomeric pair of 3‐[2‐(3‐benzenesulfonylamino‐7‐oxabicyclo[2.2.1]hept‐2‐yl‐methyl)phenyl] propionic acid, a novel thromboxane antagonist is reported. They are synthesized from either enantiomers of known (1R,2R,3R,4S)‐3‐[2‐(3‐carboxy‐7‐oxabicyclo[2,2,1]hept‐2‐yl‐methyl)phenyl]‐propionic acid methyl ester via epimerization, modified Curtius' rearrangement and sulfonylamino formation. Other derivatives may be prepared similarly.  相似文献   

2.
A cobalt‐catalyzed reductive coupling of terminal alkynes, RC?CH, with activated alkenes, R′CH?CH2, in the presence of zinc and water to give functionalized trans‐disubstituted alkenes, RCH?CHCH2CH2R′, is described. A variety of aromatic terminal alkynes underwent reductive coupling with activated alkenes including enones, acrylates, acrylonitrile, and vinyl sulfones in the presence of a CoCl2/P(OMe)3/Zn catalyst system to afford 1,2‐trans‐disubstituted alkenes with high regio‐ and stereoselectivity. Similarly, aliphatic terminal alkynes also efficiently participated in the coupling reaction with acrylates, enones, and vinyl sulfone, in the presence of the CoCl2/P(OPh)3/Zn system providing a mixture of 1,2‐trans‐ and 1,1‐disubstituted functionalized terminal alkene products in high yields. The scope of the reaction was also extended by the coupling of 1,3‐enynes and acetylene gas with alkenes. Furthermore, a phosphine‐free cobalt‐catalyzed reductive coupling of terminal alkynes with enones, affording 1,2‐trans‐disubstituted alkenes as the major products in a high regioisomeric ratio, is demonstrated. In the reactions, less expensive and air‐stable cobalt complexes, a mild reducing agent (Zn) and a simple hydrogen source (water) were used. A possible reaction mechanism involving a cobaltacyclopentene as the key intermediate is proposed.  相似文献   

3.
1,2,3,4‐Tetrasubstituted cyclopentadienes and indene derivatives with identical or different substituents were obtained in good to excellent isolated yields through a zirconocene‐ and CuCl‐mediated intermolecular coupling process. This synthetic procedure involved three organic partners, including one CH2I2, and two different or identical alkynes. Two alkynes or one diyne undergo Cp2ZrII‐mediated (Cp=η5‐C5H5) pair‐selective reductive coupling to afford the corresponding zirconacyclopentadiene derivatives, which react, in the presence of CuCl and 1,3‐dimethyl‐3,4,5,6‐tetrahydro‐2(1 H)‐pyrimidinone (DMPU), with CH2I2 through intermolecular followed by intramolecular coupling to afford the cyclopentadiene derivatives. An application of the prepared tetrasubstituted cyclopentadiene derivatives was demonstrated by the facile synthesis of the corresponding zirconocene complexes [(4RCp)2ZrCl2] and [(4RCp)2ZrR′2] (R′=Me, Et, or nBu). The unique 1,2,3,4‐tetrasubstituted cyclopentadiene ligands and the corresponding metallocenes are expected to have further applications in organometallic chemistry and organic synthesis.  相似文献   

4.
A transition‐metal‐ and oxidant‐free DNP (2,4‐dinitrophenol)‐catalyzed atom‐economical regio‐ and diastereoselective synthesis of monofunctionalized α‐alkynyl‐3‐amino‐2‐oxindole derivatives by C?H bond functionalization of cyclic amines and alkynes with indoline‐2,3‐diones has been developed. This cascade event sequentially involves the reductive amination of indoline‐2,3‐dione by imine formation and cross coupling between C(sp3)?H and C(sp)?H of the cyclic amines and alkynes. This reaction offers an efficient and attractive pathway to different types of α‐alkynyl‐3‐amino‐2‐oxindole derivatives in good yields with a wide tolerance of functional groups. The salient feature of this methodology is that it completely suppresses the homocoupling of alkynes. To the best of our knowledge, this is the first example of a DNP‐catalyzed metal‐free direct C(sp3)?H and C(sp)?H bond functionalization providing biologically active α‐alkynyl‐3‐amino‐2‐oxindole scaffolds.  相似文献   

5.
The neutral hexacoordinate silicon(IV) complex 6 (SiO2N4 skeleton) and the neutral pentacoordinate silicon(IV) complexes 7 – 11 (SiO2N2C skeletons) were synthesized from Si(NCO)4 and RSi(NCO)3 (R=Me, Ph), respectively. The compounds were structurally characterized by solid‐state NMR spectroscopy ( 6 – 11 ), solution NMR spectroscopy ( 6 and 10 ), and single‐crystal X‐ray diffraction ( 8 and 11 were studied as the solvates 8? CH3CN and 11? C5H12 ? 0.5 CH3CN, respectively). The silicon(IV) complexes 6 (octahedral Si‐coordination polyhedron) and 7 – 11 (trigonal‐bipyramidal Si‐coordination polyhedra) each contain two bidentate ligands derived from an α‐amino acid: (S)‐alanine, (S)‐phenylalanine, or (S)‐tert‐leucine. The deprotonated amino acids act as monoanionic ( 6 ) or as mono‐ and dianionic ligands ( 7 – 11 ). The experimental investigations were complemented by computational studies of the stereoisomers of 6 and 7 .  相似文献   

6.
(Acetoxymethyl)silanes 2 , 7 a – c , and 10 a – c with at least one alkoxy group, of the general formula (AcOCH2)Si(OR)3?n(CH3)n (R: Me, Et, iPr; n=0, 1, 2), were synthesized from the corresponding (chloromethyl)silanes 1 , 6 a – c , and 9 a – c by treatment with potassium acetate under phase‐transfer‐catalysis conditions. These compounds were found to provide 2,2,5,5‐organo‐substituted 1,4‐dioxa‐2,5‐disilacyclohexanes 3 , 8 a – c , and 11 a – c if treated with organotin(IV) catalysts such as dioctyltin oxide. The reaction proceeds through transesterification of the acetoxy and alkoxy units followed by ring‐closure to form a dimeric six‐membered ring. The corresponding alkyl acetates are formed as the reaction by‐products. With these mild conditions, the method overcomes the drawbacks of previously reported synthetic routes to furnish 2,2,5,5‐tetramethyl‐1,4‐dioxa‐2,5‐disilacyclohexane ( 3 ) and even allows the synthesis of 1,4‐dioxa‐2,5‐disilacyclohexanes bearing hydrolytically labile alkoxy substituents at the silicon atom in good yields and high purity. These new materials were fully characterized by NMR spectroscopy, elemental analysis, mass spectrometry, and X‐ray analysis (trans‐ 8 a ).  相似文献   

7.
The reaction of amines, N‐substituted by a 7‐oxabicyclo[2.2.1]hept‐5‐en‐2‐ylidene moiety, either with PhSCl or mCPBA (meta‐chloroperbenzoic acid) unexpectedly afforded the same type of furan derivatives by two different reaction paths. The results confirm the intervention of a homoconjugative, electron‐releasing effect of the oxabicycloalkenylideneamine moieties, as predicted theoretically.  相似文献   

8.
3‐(ω′‐Alkenyl)‐substituted 5,6‐dihydro‐1H‐pyridin‐2‐ones 2 – 4 were prepared as photocycloaddition precursors either by cross‐coupling from 3‐iodo‐5,6‐dihydro‐1H‐pyridin‐2‐one ( 8 ) or—more favorably—from the corresponding α‐(ω′‐alkenyl)‐substituted δ‐valerolactams 9 – 11 by a selenylation/elimination sequence (56–62 % overall yield). 3‐(ω′‐Alkenyloxy)‐substituted 5,6‐dihydro‐1H‐pyridin‐2‐ones 5 and 6 were accessible in 43 and 37 % overall yield from 3‐diazopiperidin‐2‐one ( 15 ) by an α,α‐chloroselenylation reaction at the 3‐position followed by nucleophilic displacement of a chloride ion with an ω‐alkenolate and oxidative elimination of selenoxide. Upon irradiation at λ=254 nm, the precursor compounds underwent a clean intramolecular [2+2] photocycloaddition reaction. Substrates 2 and 5 , tethered by a two‐atom chain, exclusively delivered the respective crossed products 19 and 20 , and substrates 3 , 5 , and 6 , tethered by longer chains, gave the straight products 21 – 23 . The completely regio‐ and diastereoselective photocycloaddition reactions proceeded in 63–83 % yield. Irradiation in the presence of the chiral templates (?)‐ 1 and (+)‐ 31 at ?75 °C in toluene rendered the reactions enantioselective with selectivities varying between 40 and 85 % ee. Truncated template rac‐ 31 was prepared as a noranalogue of the well‐established template 1 in eight steps and 56 % yield from the Kemp triacid ( 24 ). Subsequent resolution delivered the enantiomerically pure templates (?)‐ 31 and (+)‐ 31 . The outcome of the reactions is compared to the results achieved with 4‐substituted 5,6‐dihydro‐1H‐pyridin‐2‐ones and quinolones.  相似文献   

9.
Yakup Budak 《中国化学》2012,30(2):341-344
A series of thiophenyl‐containing 3‐thiophene derivatives ( 4a – 4i ) were prepared via the reaction of chalcone‐analogua compounds ( 3a – 3i ) and thiophenol in the presence of catalytic amount of KOBu‐t in CH2Cl2 with moderate to high yields. The mechanistic pathway of the reaction was explained by the Michael‐type addition of thiophenol to chalcone derivatives ( 3a – 3i ).  相似文献   

10.
A method for the synthesis of bicyclo[4.1.0]heptenes from 1,6‐enynes through Pd‐catalyzed cycloisomerization has been developed. N‐ and O‐tethered 1,6‐enynes were successfully transformed to their corresponding 3‐aza‐ and 3‐oxabicyclo[4.1.0]heptenes in reasonable‐to‐high yields using the catalysts [PdCl2(CH3CN)2]/P(OPh)3 or [Pd(maleimidate)2(PPh3)2] in toluene. The computational calculations using density functional theory indicate that [PdCl2{P(OPh)3}] in the oxidation state PdII acts as the active catalyst species for the formation of 3‐azabicyclo[4.1.0]heptenes through 6‐endo‐dig cyclization.  相似文献   

11.
Enantiomerically pure (+)‐(1S,4S,5S,6S)‐6‐endo‐(benzyloxy)‐5‐exo‐{[(tert‐butyl)dimethylsilyl]oxy}‐7‐oxabicyclo[2.2.1]heptan‐2‐one ((+)‐ 5 ) and its enantiomer (−)‐ 5 , obtained readily from the Diels‐Alder addition of furan to 1‐cyanovinyl acetate, can be converted with high stereoselectivity into 8‐oxabicyclo[3.2.1]octane‐2,3,4,6,7‐pentol derivatives (see 23 – 28 in Scheme 2). A precursor of them, (1R,2S,4R,5S,6S,7R,8R)‐7‐endo‐(benzyloxy)‐8‐exo‐hydroxy‐3,9‐dioxatricyclo[4.2.1.02,4]non‐5‐endo‐yl benzoate ((−)‐ 19 ), is transformed into (1R,2R,5S, 6S,7R,8S)‐6‐exo,8‐endo‐bis(acetyloxy)‐2‐endo‐(benzyloxy)‐4‐oxo‐3,9‐dioxabicyclo[3.3.1]non‐7‐endo‐yl benzoate ((−)‐ 43 ) (see Scheme 5). The latter is the precursor of several protected 2,6‐anhydrohepturonic acid derivatives such as the diethyl dithioacetal (−)‐ 57 of methyl 3,5‐di‐O‐acetyl‐2,6‐anhydro‐4‐O‐benzoyl‐D ‐glycero‐D ‐galacto‐hepturonate (see Schemes 7 and 8). Hydrolysis of (−)‐ 57 provides methyl 3,5‐di‐O‐acetyl‐2,6‐anhydro‐4‐O‐benzoyl‐D ‐glycero‐D ‐galacto‐hepturonate 48 that undergoes highly diastereoselective Nozaki‐Oshima condensation with the aluminium enolate resulting from the conjugate addition of Me2AlSPh to (1S,5S,6S,7S)‐7‐endo‐(benzyloxy)‐6‐exo‐{[(tert‐butyl)dimethylsilyl]oxy}‐8‐oxabicyclo[3.2.1]oct‐3‐en‐2‐one ((−)‐ 13 ) derived from (+)‐ 5 (Scheme 12). This generates a β‐C‐mannopyranoside, i.e., methyl (7S)‐3,5‐di‐O‐acetyl‐2,6‐anhydro‐4‐O‐benzoyl‐7‐C‐[(1R,2S,3R,4S,5R,6S,7R)‐6‐endo‐(benzyloxy)‐7‐exo‐{[(tert‐butyl)dimethylsilyl]oxy}‐4‐endo‐hydroxy‐2‐exo‐(phenylthio)‐8‐oxabicyclo[3.2.1]oct‐3‐endo‐yl]‐L ‐glycero‐D ‐manno‐heptonate ((−)‐ 70 ; see Scheme 12), that is converted into the diethyl dithioacetal (−)‐ 75 of methyl 3‐O‐acetyl‐2,6‐anhydro‐4,5‐dideoxy‐4‐C‐{[methyl (7S)‐3,5,7‐tri‐O‐acetyl‐2,6‐anhydro‐4‐O‐benzoyl‐L ‐glycero‐D ‐manno‐heptonate]‐7‐C‐yl}‐5‐C‐(phenylsulfonyl)‐L ‐glycero‐D ‐galacto‐hepturonate ( 76 ; see Scheme 13). Repeating the Nozaki‐Oshima condensation to enone (−)‐ 13 and the aldehyde resulting from hydrolysis of (−)‐ 75 , a (1→3)‐C,C‐linked trisaccharide precursor (−)‐ 77 is obtained.  相似文献   

12.
The intramolecular [2+2] photocycloaddition of four 4‐(but‐3‐enyl)oxyquinolones (substitution pattern at the terminal alkene carbon atom: CH2, Z‐CHEt, E‐CHEt, CMe2) and two 3‐(but‐3‐enyl)oxyquinolones (substitution pattern: CH2, CMe2) was studied. Upon direct irradiation at λ=300 nm, the respective cyclobutane products were formed in high yields (83–95 %) and for symmetrically substituted substrates with complete diastereoselectivity. Substrates with a Z‐ or E‐substituted terminal double bond showed a stereoconvergent reaction course leading to mixtures of regio‐ and diastereomers with almost identical composition. The mechanistic course of the photocycloaddition was elucidated by transient absorption spectroscopy. A triplet intermediate was detected for the title compounds, which–in contrast to simple alkoxyquinolones such as 3‐butyloxyquinolone and 4‐methoxyquinolone–decayed rapidly (τ≈1 ns) through cyclization to a triplet 1,4‐diradical. The diradical can evolve through two reaction channels, one leading to the photoproduct and the other leading back to the starting material. When the photocycloaddition was performed in the presence of a chiral sensitizer (10 mol %) upon irradiation at λ=366 nm in trifluorotoluene as the solvent, moderate to high enantioselectivities were achieved. The two 3‐(but‐3‐enyl)oxyquinolones gave enantiomeric excesses (ees) of 60 and 64 % at ?25 °C, presumably because a significant racemic background reaction occurred. The 4‐substituted quinolones showed higher enantioselectivities (92–96 % ee at ?25 °C) and, for the terminally Z‐ and E‐substituted substrates, an improved regio‐ and diastereoselectivity.  相似文献   

13.
Heterobimetallic Complexes of Lithium, Aluminum, and Gold with the N ‐[2‐ N ′, N ′‐(dimethylaminoethyl)‐ N ‐methyl‐aminoethyl]‐ferrocenyl Ligand (η5‐C5H5)Fe{η5‐C5H3[CH(CH3)N(CH3)CH2CH2NMe2]‐2} N‐[2‐N′,N′‐(dimethylaminoethyl)‐N‐methyl‐aminoethyl]ferrocene FcN,NH ( 1 ) reacts with nBuLi under formation of the lithium organyl (FcN,N)Li ( 2 ). At reactions of 2 with AlBr3 and AuCl · PPh3 the heterobimetallic organo derivatives (FcN,N)AlBr2 ( 3 ), (FcN,N)Au · PPh3 ( 4 ) are formed. A detailed characterization of 2 – 4 was carried out by single crystal x‐ray analyses as well as by NMR and Mößbauer spectroscopy.  相似文献   

14.
The chiral compounds (R)‐ and (S)‐1‐benzoyl‐2,3,5,6‐tetrahydro‐3‐methyl‐2‐(1‐methylethyl)pyrimidin‐4(1H)‐one ((R)‐ and (S)‐ 1 ), derived from (R)‐ and (S)‐asparagine, respectively, were used as convenient starting materials for the preparation of the enantiomerically pure α‐alkylated (alkyl=Me, Et, Bn) α,β‐diamino acids (R)‐ and (S)‐ 11 – 13 . The chiral lithium enolates of (R)‐ and (S)‐ 1 were first alkylated, and the resulting diasteroisomeric products 5 – 7 were aminated with ‘di(tert‐butyl) azodicarboxylate’ (DBAD), giving rise to the diastereoisomerically pure (≥98%) compounds 8 – 10 . The target compounds (R)‐ and (S)‐ 11 – 13 could then be obtained in good yields and high purities by a hydrolysis/hydrogenolysis/hydrolysis sequence.  相似文献   

15.
The C? C coupling of the two bicyclic, unsaturated dicarboximides 5 and 6 with aryl and heteroaryl halides gave, under reductive Heck conditions, the C‐aryl‐N‐phenyl‐substituted oxabicyclic imides 7a – c and 8a – c (Scheme 3). Domino‐Heck C? C coupling reactions of 5, 6 , and 1b with aryl or heteroaryl iodides and phenyl‐ or (trimethylsilyl)acetylene also proved feasible giving 8, 9 , and 10a – c , respectively (Scheme 4). Reduction of 1b with LiAlH4 (→ 11 ) followed by Heck arylation and reduction of 5 with NaBH4 (→ 13 ) followed by Heck arylation open a new access to the bridged perhydroisoindole derivatives 12a , b and 14a , b with prospective pharmaceutical activity (Schemes 5 and 6).  相似文献   

16.
The heterospirocyclic N‐methyl‐N‐phenyl‐5‐oxa‐1‐azaspiro[2.4]hept‐1‐e n‐2‐amine (6 ) and N‐(5‐oxa‐1‐azaspiro[2.4]hept‐1‐en‐2‐yl)‐(S)‐proline methyl ester ( 7 ) were synthesized from the corresponding heterocyclic thiocarboxamides 12 and 10 , respectively, by consecutive treatment with COCl2, 1,4‐diazabicyclo[2.2.2]octane, and NaN3 (Schemes 1 and 2). The reaction of these 2H‐azirin‐3‐amines with thiobenzoic and benzoic acid gave the racemic benzamides 13 and 14 , and the diastereoisomeric mixtures of the N‐benzoyl dipeptides 15 and 16 , respectively (Scheme 3). The latter were separated chromatographically. The configurations and solid‐state conformations of all six benzamides were determined by X‐ray crystallography. With the aim of examining the use of the new synthons in peptide synthesis, the reactions of 7 with Z‐Leu‐Aib‐OH to yield a tetrapeptide 17 (Scheme 4), and of 6 with Z‐Ala‐OH to give a dipeptide 18 (Scheme 5) were performed. The resulting diastereoisomers were separated by means of MPLC or HPLC. NMR Studies of the solvent dependence of the chemical shifts of the NH resonances indicate the presence of an intramolecular H‐bond in 17 . The dipeptides (S,R)‐ 18 and (S,S)‐ 18 were deprotected at the N‐terminus and were converted to the crystalline derivatives (S,R)‐ 19 and (S,S)‐ 19 , respectively, by reaction with 4‐bromobenzoyl chloride (Scheme 5). Selective hydrolysis of (S,R)‐ 18 and (S,S)‐ 18 gave the dipeptide acids (R,S)‐ 20 and (S,S)‐ 20 , respectively. Coupling of a diastereoisomeric mixture of 20 with H‐Phe‐OtBu led to the tripeptides 21 (Scheme 5). X‐Ray crystal‐structure determinations of (S,R)‐ 19 and (S,S)‐ 19 allowed the determination of the absolute configurations of all diastereoisomers isolated in this series.  相似文献   

17.
The (−)‐ and (+)‐β‐irones ((−)‐ and (+)‐ 2 , resp.), contaminated with ca. 7 – 9% of the (+)‐ and (−)‐transα‐isomer, respectively, were obtained from racemic α‐irone via the 2,6‐trans‐epoxide (±)‐ 4 (Scheme 2). Relevant steps in the sequence were the LiAlH4 reduction of the latter, to provide the diastereoisomeric‐4,5‐dihydro‐5‐hydroxy‐transα‐irols (±)‐ 6 and (±)‐ 7 , resolved into the enantiomers by lipase‐PS‐mediated acetylation with vinyl acetate. The enantiomerically pure allylic acetate esters (+)‐ and (−)‐ 8 and (+)‐ and (−)‐ 9 , upon treatment with POCl3/pyridine, were converted to the β‐irol acetate derivatives (+)‐ and (−)‐ 10 , and (+)‐ and (−)‐ 11 , respectively, eventually providing the desired ketones (+)‐ and (−)‐ 2 by base hydrolysis and MnO2 oxidation. The 2,6‐cis‐epoxide (±)‐ 5 provided the 4,5‐dihydro‐4‐hydroxy‐cisα‐irols (±)‐ 13 and (±)‐ 14 in a 3 : 1 mixture with the isomeric 5‐hydroxy derivatives (±)‐ 15 and (±)‐ 16 on hydride treatment (Scheme 1). The POCl3/pyridine treatment of the enantiomerically pure allylic acetate esters, obtained by enzymic resolution of (±)‐ 13 and (±)‐ 14 , provided enantiomerically pure cisα‐irol acetate esters, from which ketones (+)‐ and (−)‐ 22 were prepared (Scheme 4). The same materials were obtained from the (9S) alcohols (+)‐ 13 and (−)‐ 14 , treated first with MnO2, then with POCl3/pyridine (Scheme 4). Conversely, the dehydration with POCl3/pyridine of the enantiomerically pure 2,6‐cis‐5‐hydroxy derivatives obtained from (±)‐ 15 and (±)‐ 16 gave rise to a mixture in which the γ‐irol acetates 25a and 25b and 26a and 26b prevailed over the α‐ and β‐isomers (Scheme 5). The (+)‐ and (−)‐cisγ‐irones ((+)‐ and (−)‐ 3 , resp.) were obtained from the latter mixture by a sequence involving as the key step the photochemical isomerization of the α‐double bond to the γ‐double bond. External panel olfactory evaluation assigned to (+)‐β‐irone ((+)‐ 2 ) and to (−)‐cisγ‐irone ((−)‐ 3 ) the strongest character and the possibility to be used as dry‐down note.  相似文献   

18.
Diastereoisomeric isopropyl‐, 2‐ethoxyethyl‐, 2,2‐dichloroethyl‐ and 2,2,2‐trichloroethyl uridine 3′‐thiomonophosphates, 1a – 1d , respectively, have been synthesized, and their hydrolyses in aqueous alkali at 25° have been followed by HPLC. According to the time‐dependent product distributions obtained, the alkyl phosphorothioates 1a – 1d undergo cleavage to uridine 2′‐ and 3′‐thiophosphates, 7a and 7b , respectively, via a uridine 2′,3′‐cyclic thiophosphate ( 6 ). The rate of the hydroxide ion‐catalyzed cyclization of both (RP)‐ and (SP)‐diastereoisomer is highly dependent on the polar nature of the leaving group, the βlg values being ?1.23±0.03 and ?1.24±0.03, respectively. Brønsted dependence of the second‐order rate constants (kOH [dm3 mol?1 s?1]) on the pKa values of the leaving alcohols shows a convex breakpoint on going from alkyl esters 1a – 1d to aryl esters studied earlier. This may be considered as a strong evidence for a stepwise mechanism, where the formation and breakdown of the phosphorane intermediate is the rate‐limiting step with aryl and alkyl esters, respectively.  相似文献   

19.
The formal syntheses of (±)‐nephromopsinic acid, (−)‐phaseolinic acid, and the first total synthesis of (−)‐dihydropertusaric acid from (±)‐ and (−)‐7‐oxabicyclo[2.2.1]hept‐5‐en‐2‐one are described. These syntheses take advantage of a previously reported radical rearrangement (1,2‐acyl migration). A remarkable iodide‐mediated cleavage of a bicyclic system, followed by the introduction of the γ‐chains via a mixed Kolbe electrolysis, are the key steps of these syntheses. This approach is general and could be applied for the preparation of all kinds of paraconic acids with excellent control of the stereochemistry.  相似文献   

20.
β‐Amino acids 1 – 3 with OH and F substituents in the α‐position have been prepared (Scheme) from the natural (S)‐α‐amino acids alanine, valine, and leucine, and incorporated into β‐hexa‐ and β‐heptapeptides 4 – 12 . The peptide syntheses were performed according to a conventional solution strategy (Boc/Bn protection) with fragment coupling. The new β‐peptides with (series a ) and without (series b ) terminal protection were isolated in HPLC‐pure form and characterized by NMR spectroscopy and MALDI mass spectrometry. The chemical properties as well as the patterns of the CD spectra (Figs. 3–5) depend upon constitution (OH, F, F2 substitution) and configuration (l or u) of the amino acid residues, upon the total number of OH and F substituents in the peptide chain, and upon the solvent used (H2O, MeOH, CF3CH2OH, (CF3)2CHOH). No reliable clues regarding the structures can be obtained from these CD spectra. Only a full NMR analysis will be able to answer the questions: a) with which known secondary structures (Figs. 1 and 2) of β‐peptides are the OH and F derivatives compatible? b) Are new secondary structures enforced by the polar and/or H‐bonding backbone substituents? Furthermore, the β‐peptides described here will enable us to study changes in chemical, enzymatic, and metabolic stability, and in physiological properties caused by the heteroatoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号