首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
LDPE films have been coated with single or bi-layer hybrid coatings formed through sol-gel reactions in order to improve their thermo-oxidative resistance. Different chemical compositions of the coating were investigated which differ either in the amount of the inorganic phase (silica deriving from tetraethoxysilane) or in the organic component (either alkoxy silane functionalized polyethylene-poly(ethylene glycol) diblock copolymers or poly(vinyl alcohol)). The thermo-oxidative stability of the coated films thus obtained has been assessed by means of isothermal differential scanning calorimetry (DSC) and isothermal thermo-gravimetric analysis (TGA) under accelerated conditions, i.e. at high temperatures in pure oxygen flow. Conventional ageing in air at lower temperature, slightly above the in-service one, has also been carried out. The obtained data show: a) a general improvement of the thermal-resistance for the coated LDPE samples; b) a particularly high thermal-resistance for LDPE coated with a bi-layer coating with pure silica in the top layer; c) the effectiveness of the accelerated techniques in qualitatively assessing the thermo-oxidative resistance of the coated polymeric systems.  相似文献   

2.
The molecular relaxation behaviour of high density polyethylene (HDPE), exposed to gamma radiation in air to various absorbed doses (up to 700 kGy), has been investigated by dielectric loss (tanδ) analysis. All relaxation zones (γ, β and α, in order of increasing temperature), between 25 K and the melt temperature, were studied in the frequency range from 1 kHz to 1 MHz. The changes observed in the dielectric relaxation spectra were related to the modifications in the structural and morphological parameters attributed to exposure of the samples to radiation. Radiation-induced changes in the crystal fraction, oxidative degradation and degree of network formation, observed by wide angle X-ray scattering (WAXS), differential scanning calorimetry (DSC), infrared spectroscopy (IR) and gel measurements, were well connected with the changes in intensity, position and activation energy of α and γ relaxations. Complete disappearance of the already weak β relaxation with irradiation is attributed to the more restricted chain segment mobility in the net structure, but the contribution due to radiation-induced increase in crystallinity should also be taken into account.  相似文献   

3.
The decrease in socket thickness of several total hip prostheses was measured on X-ray film. The following prostheses were compared: (1) SOM “28 mm metal head and an ultra-high-molecular-weight-polyethylene (UHMWPE) socket irradiated with 108 rad of γ-radiation”, (2) T-28 “28 mm metal head and a UHMWPE socket not irradiated”, (3) Bioceram “28 mm alumina head and UHMWPE not irradiated” and (4) irradiated Bioceram “28 mm alumina head and UHMWPE socket irradiated with 108 rad of γ-radiation”.The average steady state wear rate of SOM, T-28, Bioceram and irradiated Bioceram were 0.076, 0.247, 0.098 and 0.072 mm/year, respectively.The weight bearing portion of the irradiated socket presented a clearly-outlined and irregular pattern of about 0.1 μm thickness having a smooth ripple surface. The scratch and holding phenomenon characteristics of non-irradiated sockets was not observed at all.In our experimental tests using an IS sliding wear test machine, the wear measured as decrease of thickness was smallest at 108 rad, although there was an increase in the coefficient of friction. Our experimental and clinical findings suggest that the best total hip prosthesis at present is one with an alumina head and a UHMWPE socket irradiated with 108 rad of γ-radiation.  相似文献   

4.
In the present work, γ irradiation is used for the in situ compatibilisation of blends of recycled high density polyethylene (rHDPE) and ground tyre rubber (GTR) powder. The expected compatibilisation mechanism involves the formation of free radicals, leading to chain scission within rubber particles, crosslinking of polyethylene matrix and co-crosslinking between the two blend components at the interface. While uncompatibilised rHDPE/GTR blends show poor mechanical properties, especially for elongation at break and Charpy impact strength, irradiation leads to a significant increase of these mechanical performances. Such behaviour is attributed to the development of an adhesion between GTR particles and the surrounding thermoplastic matrix. This conclusion is supported by in situ scanning electron microscopy observations during microtensile tests, showing strong elongation of GTR particles upon deformation of irradiated blends.  相似文献   

5.
The surface of low density polyethylene (LDPE) was modified by grafting a photoinitiator on it, after an Ar plasma treatment. The functionalisation was characterized by contact angle measurements, XPS analyses and AFM. The grafted LDPE was then coated with a UV-curable formulation based on highly fluorinated oligomers. Although the surface tension of the coating is very low, a good adhesion onto the substrate was obtained due to the surface treatment which was applied.  相似文献   

6.
This paper attempts to quantify the stability of three-phase systems generated by aerating concentrated water-in-oil emulsions. In such materials, which we call foamed emulsions, the continuous phase is itself a two-phase system. In this work, we modify and extend the method originally proposed by Iglesias et al. (Colloids and Surfaces A, 98 (1995) 167–174) to viscous three-phase foams. The modified method involves imparting a destabilising force to the sample to make the foam short-lived and measuring the change in height as a function of decay time. The change of height during decay represents the rate at which gas is evolved from the foamed emulsion and is logarithmic with time. The data treatment yields two values, the decay constant and half-life, which are used as a means of measuring and comparing stability. Two distinct decay mechanisms (smooth decay and catastrophic collapse) operate in foamed emulsions that are subjected to oscillations. For a given decay mechanism, the decay constant is an intrinsic property of the foamed emulsion and is independent of the imposed oscillations. Experimental results indicate that different bubble stabilising surfactants and emulsion morphology significantly affect the foam stability, and that the stability is inversely related to the initial expansion. Examination of the gas–emulsion interface shows a segregation of droplets, with smaller droplets found preferentially at the gas–emulsion interface.  相似文献   

7.
Polymer insulating materials used in radioactive environment can be degraded by discharge which is induced by surface charge accumulation. Hence the stability of the electrical insulation is dependent upon the dynamic behavior of surface charge that may be changed by irradiation. In this paper, polybutylene naphthalate was employed as test sample to investigate the effects of gamma-ray irradiation on the charge behavior. The samples were previously irradiated in air up to 100 kGy and then up to 1000 kGy with dose rate of 10 kGy/h using a 60Co gamma-source. The experiment was carried out under a negative dc stress between two aluminum plate electrodes. An electrostatic probe was designed to measure the charge density. Obtained results show that with the increase of the total dose of the irradiation, both the capacity of surface charge and the rate of charge decay decrease. It is proposed that the charging behavior depends upon the density of localized surface states that is reduced by the radiation induced cross-linking reactions. The decay is caused by the recombination of surface charge with ions of the opposite sign in air.  相似文献   

8.
We studied the topographical effect of roughness displayed by a closely packed particle monolayer on formation of a cell monolayer (cell sheet). Particle monolayers were prepared by Langmuir-Blodgett deposition using particles, which were 527nm (SA053) and 1270nm (SA127) in diameter. Human umbilical vein endothelial cells (HUVECs) were seeded at a high density (2.0 x10(5)cells/cm(2)) onto particle monolayers. It was found that cells gradually became into contact with adjacent cells on the SA053 monolayer and the formed cell sheet could be readily detached from the particle monolayer by gentle pipetting. On the other hand, cells adhering onto the tissue culture polystyrene (TCPS) and the SA127 particle monolayer were difficult to peel off. At a low cell seeding density (5.0x10(4)cells/cm(2)), pre-coating with bovine plasma fibronectin (FN) allowed cell growth on an SA053 particle monolayer, and a confluent monolayer was able to be peeled as a cell sheet from the particle monolayer just by pipetting. By immunostaining of human fibronectin, we found that fibronectin was secreted and concentrated onto the substrate side of a cell sheet. The obtained cell sheet adhered and grew on the TCPS again within 20min.  相似文献   

9.
Nanometer-sized gelatin particles have been prepared by means of gamma-ray irradiation and characterized by static and dynamic light scattering combined with circular dichroism (CD) measurements. The molecular weight of the nanoparticles was much larger than that of the original gelatin molecules, whereas the hydrodynamic radius was much smaller. Radius of gyration evaluated from the angular dependence of the static light scattering intensity decreased with increasing irradiation dose. CD spectra of the gelatin nanoparticles were independent of temperature, and it is suggested that the nanoparticles consist of highly and randomly packed gelatin and their conformation is stable against the temperature change.  相似文献   

10.
A comparative study on the lamellar morphology of a collection of polyethylene foam (LDPE) has been performed in order to obtain a better understanding of the morphology of the crystalline phase of these materials. The lamellar structure was measured by small-angle X-ray scattering (SAXS), differential scanning calorimetric (DSC) and Raman spectroscopy. The results have shown that the lamellar structure of the foams is different to that of a LDPE solid sheet. Moreover, the different sensitivity of the three experimental techniques to the lamellar structure has also been analyzed.  相似文献   

11.
To prepare the functional nanoparticle with biological affinity, we tried to control the particle diameter and volume phase transition point of protein nanogel by quantum-ray irradiation. We succeeded in controlling the particle diameter of gelatin nanogel in the range of 20–70 nm by gamma-ray irradiation. It was also found that the prepared gelatin nanogel reversibly swelled and shrunk by pH and temperature change. Volume phase transition point and swelling ratio were found to change, depending on the absorbed dose and gelatin concentration.  相似文献   

12.
This study compares the effects of radiation dose on the isothermal and non-isothermal crystallization of LLDPE, LDPE and HDPE by differential scanning calorimetry (DSC). It includes qualitative comparison of the non-isothermal data and quantitative calculations of Avrami parameters for crystallization rate and nucleation mode. The isothermal crystallization allowed the observation of the changes in the crystallization rate, related to the decrease in the crystallization temperature caused by the crosslinking of the polymer. It was also observed by the non-isothermal crystallization, the development of crystallites of very different sizes in the polymer.  相似文献   

13.
Interfacial rheological properties and their suitability for foam production and stability of two vegetable proteins were studied and compared to β-casein. Proteins used ranged from flexible to rigid/globular in the order of β-casein, gliadin and soy glycinin. Experiments were performed at pH 6.7. Network forming properties were characterised by the surface dilational modulus (determined with the ring trough) and the critical falling film length (Lstill) at which a stagnant protein film will break. Gliadin had the highest dilational modulus, followed by glycinin and β-casein, whereas glycinin formed the strongest film against fracture in the overflowing cylinder. The rate of decrease in the surface tension was studied at the air–water (Wilhelmy plate method) and the oil–water interface (bursting membrane) and the dynamic surface tension during compression and expansion in the caterpillar. Gliadin had the lowest equilibrium interfacial tensions and β-casein the lowest dynamic surface tension during expansion. Hardly any foam could be formed at a concentration of 0.1 g/l by shaking. At a concentration of 1.4 g/l most foam was formed by β-casein, followed by gliadin and glycinin. It seems that in the first place the rate of adsorption is important for foam formation. For the vegetable proteins, adsorption was slow. This resulted in lower foamability, especially for glycinin.  相似文献   

14.
《Comptes Rendus Chimie》2019,22(4):277-282
Quaternary ammonium cationic surfactants are widely applied in many different fields, such as textile, cosmetic, and petrochemical industries. However, little research has been done on the effects of anion on cationic surfactants. In this study, two new surfactants, cetyltrimethylammonium glycine (CTAG) and octadecyltrimethylammonium glycine (OTAG), were prepared in a simple way using cetyltrimethylammonium chloride (CTAC), octadecyltrimethylammonium chloride (OTAC), and glycine. Then the surface activities were evaluated and compared with the two raw materials. The surface activity of CTAG and OTAG, including surface tension, foaming ability, and emulsification, is better than that of CTAC and OTAC in each case. With the glycine, the corrosion inhibition efficiencies of CTAG and OTAG are 91.12% and 97.89%, respectively, which are more effective than that of CTAC and OTAC. The superior performance of the two surfactants will be very helpful for developing an effective solution in the future.  相似文献   

15.
A study of irradiation in the treatment of wastewater   总被引:5,自引:0,他引:5  
A grafting copolymer of starch and acrylamide was prepared by 60Co-γ pre-irradiation. After purification, the copolymer was modified by a cationic reaction to form a cationic copolymer. The structure of the cationic copolymer was identified by IR and NMR spectroscopy. Using the industrial and sanitary municipal wastewater from the Factory of Wastewater Treatment of Gaobeidian in Beijing as the study sample, three-treatment methods: flocculation deposition, flocculation deposition combined with γ irradiation and the direct irradiation were carried out. COD was applied to evaluate the treatment effect. The preliminary results show that the method of flocculation deposition combined with γ irradiation was effective than the other two.  相似文献   

16.
The quality of frozen avocado pulp irradiated with 60Co gamma rays at doses of: 0.5, 1.0, 1.5, and 2.5 kGy, was studied. These are possible doses for reducing the content of bacteria Listeria monocytogenes by 1–4 log cycles. The study principally consisted of weekly evaluations of damages caused in lipids and chlorophyll pigment over a period of one year. No significant differences were found in either hydrolysis rancidity or in the oxidative rancidity for any of the doses. The concentrations of fatty acids and peroxides were below those established by Codex Alimentarius. This means that the quality of the oil in the frozen avocado pulp remains acceptable. The kinetic model for the oxidative rancidity is of first order and the shelf life of the product is of about 120 weeks. The concentrations of the fatty acids and of malondialdehyde were not high enough to produce off-flavors. It was also determined that the radiation doses did not influence the chemistry of the chlorophyll. The results were confirmed by the panelists, who accepted irradiated frozen pulp at the highest radiation dose.  相似文献   

17.
The decontamination effects of gamma irradiation on the edible gelatin were studied. The results indicated that the bacterium and mold in the gelatin decreased significantly with the dose of 5 kGy treatment. However, the content of crude protein, microelement, amino acid in the gelatin remained unchanged under the irradiation of 4 and 8 kGy. The viscosity of the gelatin decreased with the increase of the irradiation dose, but the gelatin with a dose of 5 kGy treatment still accorded with the standard of the second-order class. These results suggested that the optimum irradiation dose for edible gelatin for the purpose of decontamination was in the range 3–5 kGy.  相似文献   

18.
The decay rate of vinyl unsaturation in high-density polyethylenes irradiated at temperatures from about 310 to 450 K, changes significantly in the melting range up to the crystalline melting point as does free radical mobility and the polymer crystallinity. However, orienting the polymer, or slow cooling or quenching from the melt, prior to irradiation, do not alter the decay process or its rate, although they do alter the rate of increase of insoluble gel and of elastic modulus in the molten state. It is suggested that, below 340 K, the marked deviations from a first-order decay result from the limited mobility of polymeric free radicals in the crystalline phase and from scavenging, by vinyl groups, segregated into the amorphous phase, of radiolytic hydrogen atoms (H). In the melting range, the mobility of polymeric free radicals increases as the crystallinity decreases, reducing the importance of scavenging, so vinyl decay approximates more closely to a first-order relation. In the melt, the vinyl decay relation is not changed qualitatively by H atom scavenging, but the effective vinyl concentration is lower, so the decay rate drops sharply.  相似文献   

19.
The presence of a significant content of fillers accelerates the degradation of ATH filled EPDM subjected to gamma irradiation at room temperature. Above the melting temperature of the EPDM, this induces a decrease in the apparent mechanical reinforcement of the fillers. This also promotes de-cohesion mechanisms which leads to an increase in the strain at break with irradiation dose. It is not clear whether the use of a filler treatment attenuates this accelerating effect or not; however, part of this treatment remains efficient at a high dose and seems also to delay but not suppress the occurrence of de-cohesion mechanisms at large strain. Moreover, at room temperature, i.e. below the melting temperature, all the consequences of ageing by gamma irradiation are strongly attenuated by the presence of a semi-crystalline microstructure, the morphology of which is not too strongly modified by irradiation.  相似文献   

20.
The surfaces of polyethylene terephthalate (PET) obtained by irradiation with a CO2 pulsed laser in air were studied. The complicated microstructures using various laser wavelengths were observed by scanning electron microscopy (SEM). The changes in chemical and physical properties of the irradiated PET surface were investigated by attenuated total reflectance infrared spectroscopy (ATR-FTIR) and contact angle measurements. ATR-IR spectrum showed that the crystallinity in the surface region decreased due to laser irradiation. The water drop contact angle also decreased with increasing of laser pulses. The density of peroxides formed on the irradiated PET surface were determined by iodide method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号