首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A high-performance liquid chromatography–inductively coupled plasma mass spectrometry (HPLC–ICP–MS) method is presented for analysis of cisplatin, monoaquacisplatin, diaquacisplatin, carboplatin, and oxaliplatin in biological and environmental samples. Chromatographic separation was achieved on pentafluorophenylpropyl-functionalized silica gel. For cisplatin, carboplatin, and oxaliplatin limits of detection of 0.09, 0.10, and 0.15 g L–1, respectively, were calculated at m/z 194, using aqueous standard solutions. (3 L injection volume). The method was utilized for model experiments studying the stability of carboplatin and oxaliplatin at different chloride concentrations simulating wastewater and surface water conditions. It was found that a high fraction of carboplatin is stable in ultrapure water and in solutions containing 1.5 mol L–1 Cl, whereas oxaliplatin degradation was increased by increasing the chloride concentration. In order to support the assessment of oxaliplatin eco-toxicology, the method was tested for speciation of patient urine. The urine sample contained more than 17 different reaction products, which demonstrates the extensive biotransformation of the compound. In a second step of the study the method was successfully evaluated for monitoring cancerostatic platinum compounds in hospital waste water.  相似文献   

2.
Capillary electrophoresis (CE) was used to separate the neptunium oxidation states Np(IV) and Np(V), which are the only oxidation states of Np that are stable under environmental conditions. The CE setup was coupled to an inductively coupled plasma mass spectrometer (Agilent 7500ce) using a Mira Mist CE nebulizer and a Scott-type spray chamber. The combination of the separation capacity of CE with the detection sensitivity of inductively coupled plasma mass spectrometry (ICP-MS) allows identification and quantification of Np(IV) and Np(V) at the trace levels expected in the far field of a nuclear waste repository. Limits of detection of 1?×?10-9 and 5?×?10-10 mol L-1 for Np(IV) and Np(V), respectively, were achieved, with a linear range from 10-9 to 10-6 mol L-1. The method was applied to study the redox speciation of the Np remaining in solution after interaction of 5?×?10-7 mol L-1 Np(V) with Opalinus Clay. Under mildly oxidizing conditions, a Np sorption of 31% was found, with all the Np remaining in solution being Np(V). A second sorption experiment performed in the presence of Fe2+ led to complete sorption of the Np onto the clay. After desorption with HClO4, a mixture of Np(IV) and Np(V) was found in solution by CE–ICP–MS, indicating that some of the sorbed Np had been reduced to Np(IV) by Fe2+.  相似文献   

3.
A European directive was recently adopted limiting the use of hazardous substances such as Pb, Hg, Cd, and Cr(VI) in vehicle manufacturing. From July 2003 a maximum of 2 g Cr(VI) will be authorised per vehicle in corrosion-preventing coatings of key components. As no standardised procedures are available to check if produced vehicles are in agreement with this directive, the objective of this work was to develop analytical procedures for total chromium and Cr(VI) determination in these materials. The first step of this study was to optimise digestion procedures for total chromium determination in plastic and metallic materials by inductively coupled plasma mass spectrometry (ICP–MS). High resolution (HR) ICP–MS was used to examine the influence of polyatomic interferences on the detection of the 52Cr+ and 53Cr+ isotopes. If there was strong interference with m/z 52 for plastic materials, it was possible to use quadrupole ICP–MS for m/z 53 if digestions were performed with HNO3+H2O2. This mixture was also necessary for digestion of chromium from metallic materials. Extraction procedures in alkaline medium (NH4+/NH3 buffer solution at pH 8.9) assisted by sonication were developed for determining Cr(VI) in four different corrosion-preventing coatings by HPLC–ICP–MS. After optimisation and validation with the only solid reference material certified for its Cr(VI) content (BCR 545; welding dusts), the efficiency of this extraction procedure for screw coatings was compared with that described in the EN ISO 3613 standard generally used in routine laboratories. For coatings comprising zinc and aluminium passivated in depth with chromium oxides the extraction procedure developed herein enabled determination of higher Cr(VI) concentrations. This was also observed for the screw covered with a chromium passivant layer on zinc–nickel. For coating comprising a chromium passivant layer on alkaline zinc the standardized extraction procedure was more efficient. In the case of painted metallic plate, because of a reactive matrix towards Cr(VI), its extraction without degradation was difficult to perform.  相似文献   

4.
A validated, highly sensitive, and selective HPLC method with MS–MS detection has been developed for quantitative determination of azithromycin (AZI) in human Na2EDTA plasma. Roxithromycin (ROX) was used as internal standard. Human plasma containing AZI and internal standard was ultrafiltered through Centrifree Micropartition devices and the concentration of AZI was determined by isocratic HPLC–MS–MS. Multiple reaction monitoring mode (MRM) was used for MS–MS detection. The calibration plot was linear in the concentration range 2.55–551.43 ng mL−1. Inter-day and Intra-day precision and accuracy of the proposed method were characterized by R.S.D and percentage deviation, respectively; both were less than 8%. Limit of quantification was 2.55 ng mL−1. The proposed method was used to determine the pharmacokinetic profile of AZI (250-mg tablets).  相似文献   

5.
We optimized a mercury (Hg) speciation extraction method for human hair in combination with species-specific isotope-dilution analysis by gas chromatography–inductively coupled plasma–mass spectrometry (GC–ICP–MS). The method was validated on human hair reference material RM (IAEA-086), which is recommended for analysis of monomethylmercury (MMHg) and inorganic mercury (IHg). Three reagents, hydrochloric acid (HCl), nitric acid (HNO3), and tetramethylammonium hydroxide (TMAH), and three extraction procedures, at ambient temperature for 12 h, microwave-assisted at 75 °C for 6 min, and oven heated at 80 °C for 2 h were tested. Extraction efficiency, recovery, and potential species transformations were evaluated for each method. The most efficient procedures, with recovery of ~90 % for each species with limited demethylation (<5 %) and methylation (0 %), were HNO3 digestion, irrespective of temperature, and microwave-assisted TMAH extraction. Acidic extraction with HCl induces significant demethylation, with production of artifacts. To correct for potential demethylation artifacts we recommend spiking with isotopically enriched standards before the extraction step.  相似文献   

6.
An inductively coupled plasma mass spectrometric (ICP–MS) procedure has been developed for the determination of trace elements in wine. The procedure consists in simple 1+1 dilution of the wine and semi-quantitative analysis (without external calibration) using In as internal standard. Thirty-one elements at concentrations ranging from 0.1 mg mL–1 to 0.5 ng mL–1 can be determined by ICP–MS analysis with and without digestion. It was investigated whether a matrix effect observed for EtOH in the wine matrix can be overcome by application of a micro-concentric nebulizer with a membrane desolvator (MCN 6000). The results obtained for the MCN 6000 are compared with those obtained by use of a conventional Meinhard nebulizer. It is shown that the observed matrix effect can only be compensated by use of an internal standard for the Meinhard nebulizer, but not for the MCN 6000. Results for ICP–MS are compared with those obtained by total reflection X-ray fluorescence spectrometry (TXRF).  相似文献   

7.
Arsenic-speciation analysis in marine samples was performed by high-pressure liquid chromatography (HPLC) with ICP–MS detection. Separation of eight arsenic species—AsIII, MMA, DMA, AsV, AB, TMAO, AC and TeMAs+—was achieved on a C18 column with isocratic elution (pH 3.0), under which conditions AsIII and MMA co-eluted. The entire separation was accomplished in 15 min. The HPLC–ICP–MS detection limits for the eight arsenic species were in the range 0.03–0.23 μg L−1 based on 3σ for the blank response (n=5). The precision was calculated to be 2.4–8.0% (RSD) for the eight species. The method was successfully applied to several marine samples, e.g. oysters, fish, shrimps, and marine algae. Low-power microwave digestion was employed for extraction of arsenic from seafood products; ultrasonic extraction was employed for the extraction of arsenic from seaweeds. Separation of arsenosugars was achieved on an anion-exchange column. Concentrations of arsenosugars 2, 3, and 4 in marine algae were in the range 0.18–9.59 μg g−1. This paper was presented at the European Winter Conference 2005  相似文献   

8.
This critical review discusses the conditions under which inductively coupled plasma–isotope dilution mass spectrometry (ICP–IDMS) is suitable as a routine method for trace element and element-speciation analysis. It can, in general, be concluded that ICP–IDMS has high potential for routine analysis of trace elements if the accuracy of results is of predominant analytical importance. Hyphenated techniques with ICP–IDMS suffer both from lack of commercially available isotope-labeled spike compounds for species-specific isotope dilution and from the more complicated system set-up required for species-unspecific ICP–IDMS analysis. Coupling of gas or liquid chromatography with species-specific ICP–IDMS, however, enables validation of analytical methods involving species transformations which cannot easily be performed by other methods. The potential and limitations of ICP–IDMS are demonstrated by recently published results and by some unpublished investigations by our group. It has been shown that possible loss of silicon as volatile SiF4 during decomposition of a sample by use of hydrofluoric acid has no effect on trace silicon determination if the isotope-dilution step occurs during digestion in a closed system. For powder samples, laser ablation ICP–IDMS can be applied with an accuracy comparable with that only available from matrix-matched standardization, whereas the accuracy of electrothermal vaporization ICP–IDMS was strongly dependent on the element determined. The significance of easy synthesis of isotope-labeled spike compounds for species-specific ICP–IDMS is demonstrated for monomethylmercury and Cr(VI). Isotope-exchange reactions between different element species can prevent the successful application of ICP–IDMS, as is shown for iodinated hydrocarbons. It is also shown for monomethylmercury that species transformations during sample-pretreatment steps can be followed by species-specific ICP–IDMS without loss of accuracy. A relatively simple and time-efficient procedure for determination of monomethylmercury in environmental and biological samples is discussed. The method, which entails a rapid microwave-assisted isotope dilution step and in-situ extraction of the derivatized species, has good potential for routine application in the future.  相似文献   

9.
This study focused on the detection/identification of possible selenium metabolites in human urine. Organoselenium compounds not commercially unavailable were synthesized and characterized by electrospray mass spectrometry. Separation of selenomethionine, methylselenomethionine, trimethylselonium, selenoethionine, and selenoadenosylmethionine was achieved by ion-pairing HPLC with a mobile phase of 2 mmol L–1 hexanesulfonic acid, 0.4% acetic acid, 0.2% triethanolamine (pH 2.5), and 5% methanol. The column effluent was introduced on-line to inductively coupled plasma–mass spectrometry for selenium-specific detection (77Se and 78Se). For selenium speciation in urine, solid-phase extraction was carried out using C18 cartridges modified with hexanesulfonic acid. Selective retention of cationic species was observed from acidified urine (perchloric acid, pH 2.0). After elution with methanol, evaporation, and dissolution in the mobile phase, the sample was introduced to the HPLC–ICP–MS system and the chromatographic peaks were assigned by adding standards. The species identified in urine were selenomethionine, trimethylselonium ion, and selenoadenosylmethionine. The last species was detected for the first time and our results suggest that selenomethionine might enter the metabolic pathway of its sulfur analog in the activated methylation cycle.Kazimierz Wrobel and Katarzyna Wrobel are on the leave from the Institute of Scientific Research, University of Guanajuato, L. de Retana No. 5, 36000 Guanajuato, Gto., Mexico  相似文献   

10.
Cytochromes P-450 are members of a superfamily of hemoproteins involved in the oxidative metabolism of various physiological and xenobiotic compounds in eukaryotes and prokaryotes. The multiplicity of this group of enzymes has been widely studied by chromatographic techniques, mainly high-performance liquid chromatography (HPLC). Because these enzymes are membrane-bound proteins, sample preparation for chromatographic separation of P-450 enzymes requires a solubilization step. The sample-preparation procedures are critical, because detergents affect not only the efficiency of protein solubilization but also their further chromatographic resolution. Trout liver microsomes have been taken here as a model sample to investigate iron speciation in cytochrome P-450. Trouts were treated intraperitoneally with -naphthoflavone, a potent inducer of some P-450 enzymes, and a microsomal suspension containing 7.4±0.1 nmol mL–1 P-450 enzymes was obtained by ultracentrifugation. Lubrol PX was selected as detergent for solubilization, resulting in about 90% solubilization recovery. The solubilized cytochromes P-450 were further separated by AE–FPLC, with UV detection, or coupled to ICP–MS with an octapole reaction system, ICP–(ORS)MS (monitoring Fe signals at masses 54, 56, and 57). A sampling procedure and chromatographic conditions are developed and were successfully applied to iron speciation in trout liver P-450 enzymes. ICP–(ORS)MS detection of P-450 enzymes is Fe-specific and so will give accurate information on the prosthetic group of the protein, which can constitute an advantageous alternative to classical methods for detection of these hemoproteins.  相似文献   

11.
Larotrectinib is a first-generation tropomyosin kinase inhibitor, approved for the treatment of solid tumors. In this paper, we present a validated dried blood spot (DBS) method for the quantitation of larotrectinib from mouse blood using HPLC–MS/MS, which was operated under multiple reaction monitoring mode. To the DBS disc cards, acidified methanol enriched with internal standard (IS; enasidenib) was added and extracted using tert-butyl methyl ether as an extraction solvent with sonication. Chromatographic separation of larotrectinib and the IS was achieved on an Atlantis dC18 column using 10 mm ammonium formate–acetonitrile (30:70, v/v) delivered at a flow-rate of 0.80 ml/min. Under these optimized conditions, the retention times of larotrectinib and the IS were ~0.93 and 1.37 min, respectively. The total run time was 2.50 min. Larotrectinib and the IS were analyzed using positive ion scan mode and parent–daughter mass to charge ion (m/z) transitions of 429.1 → 342.1 and 474.1 → 267.1, respectively, were used for the quantitation. The calibration range was 1.06–5,080 ng/ml. No matrix effect or carryover was observed. Hematocrit did not influence DBS larotrectinib concentrations. All of the validation parameters met the acceptance criteria. The applicability of the validated method was shown in a mouse pharmacokinetic study.  相似文献   

12.
An on-line HPLC–ESI–MS–MS method has been developed for determination of glutathione and phytochelatins (PC) in plant tissues. For sample pretreatment, dithiothreitol (DTT) must be added at the very beginning, as an anti-oxidant. Optimization of instrumental conditions i.e. composition of HPLC mobile phase, ionization efficiency of the electrospray interface, and MS–MS detection in the multiple ion-monitoring mode, are the central aspects of this work. A polystyrene-packed column was found to be superior to a standard silica-packed reversed-phase column. A concave quadratic gradient of ammonium formate buffer and acetonitrile was found to be optimum. The limits of quantitation were 0.2 mol kg–1 plant tissue for glutathione and PC. The method has been applied to analysis of tissue samples from Vicia faba grown in Cd-containing nutrient solutions.Dedicated to the memory of Wilhelm Fresenius  相似文献   

13.
The direct determination of element signatures in polar ice core samples from Greenland by laser ablation with subsequent inductively coupled plasma mass spectrometry analysis has been investigated. A cryogenic sample chamber enables the element determination in ice directly from the solid (frozen) state. A procedure was developed to analyse up to 38 elements (traces: Mg, Al, Fe, Zn, Cd, Pb and rare earth elements; minor constituents: Na) in ice samples from Greenland with a previously unachievable spatial resolution of 4 mm along the core axis. This resolution is helpful to detect seasonal variations of element concentration in thin annual layers of deep ice. We report operating conditions and analytical performance of the experimental set up, the improvement of signal stability by (17)OH internal standardisation and application of a desolvation unit. Calibration of the system was performed with frozen multielement standard solutions along a special preparation procedure. Detection limits for the tracers Na, Mg (sea salt), Al (mineral dust) and Zn (anthropogenic source) are 0.1-1 microg kg(-1). Best detection limits in the range of 0.001-0.01 microg kg(-1 )were reached for Co, Pb and all rare earth elements. To validate the method, frozen standard reference materials were measured. The recovery is about +/-10%. Greenland ice core samples from different ages were analysed with the new technique. The results obtained by laser ablation were compared with values from solution analysis, available published data and the particle content. Most elements have shown good correlation with the particle content in the Greenland samples; however, differences could be seen between the values obtained by laser ablation and solution bulk analysis after a tri-acid digestion. The influence of particles is discussed. The high spatially resolved 2D mapping of element concentrations shows strong inhomogeneities along the core axis most probably due to seasonal variations of element deposition.  相似文献   

14.
This paper reports characterization of the behavior of five pneumatic micronebulizers based on slightly different designs in inductively coupled plasma atomic-emission spectrometry and mass spectrometry (ICP–AES and ICP–MS). Two nebulizers were used as reference nebulizers, a high-efficiency nebulizer (HEN) and a micromist (MM). They were compared with a commercially available PFA (tetrafluoroethylene–perfluoroalkyl vinyl ether copolymer) nebulizer and with two new prototypes called the polymeric pneumatic concentric nebulizer (PMN) and the high-solids micronebulizer (HSM). The dimensions of the nebulizers, the gas back-pressure, and the free liquid uptake rates were measured. The study also included tertiary aerosol drop-size distributions, analyte transport rate, and analytical figures of merit, i.e. sensitivities and limits of detection, both in ICP–AES and ICP–MS. Recoveries for two food solid reference materials were also determined. Overall, the results indicated that the PFA and the HEN nebulizers provided the best results. These two nebulizers delivered a higher mass of analyte to the plasma and showed better sensitivies giving lower limits of detection than the PMN, HSM and MM. The results revealed that the liquid prefilming effect occurring before aerosol production in the PFA nebulizer promoted more efficient interaction of liquid and gas, thus affording good results even though gas back-pressure values could be maintained below 3 bar. In contrast, the HEN had to be operated at about 7 bar under the same conditions. Nebulizer design did not have a relevant effect on the recovery, which confirmed that the spray chamber plays an important role in terms of non-spectroscopic interferences.  相似文献   

15.
The determination of trace elements in pure quartz glass samples has been performed by coupling an ICP quadrupole mass spectrometer with the LINA-Spark-Atomizer, an IR laser ablation system dedicated to direct bulk and surface analysis of solid samples. Linear calibration curves were obtained for nine elements (Na, Al, Ca, Ti, Cr, Mn, Zr, Ba, and Pb) in the ng g–1 range with detection limits of less than 10 ng g–1 for Ca, Cr, Mn, Zr, Ba, and Pb and in the range of 120–220 ng g–1 for Na, Al, and Ti. The distance between the laser focal point and the sample surface has a significant influence on signal intensity and precision, both of which can be improved by a factor of approximately two by focusing the laser 15 mm behind the sample surface. Aerosol moistening reduced the standard deviation of the signal intensity by a factor of 2–4. Signal instability, which resulted from different ablation rates or variations in the transmission of the mass spectrometer, were compensated by use of the simultaneously measured SiAr+ ion as an internal standard. Under these conditions precision was usually better than 5% RSD. The results were compared with those obtained by use of a commercial LA–ICP–MS system. With this instrumentation linear calibration curves were achieved for three elements only (Al, Ti, and Pb), showing that LA–ICP–MS is less appropriate for bulk analysis in the ng g–1 range.  相似文献   

16.
Determination of phosphorus in small amounts of protein samples by ICP–MS   总被引:3,自引:0,他引:3  
Inductively coupled plasma mass spectrometry (ICP-MS) is used for phosphorus determination in protein samples. A small amount of solid protein sample (down to 1 micro g) or digest (1-10 micro L) protein solution was denatured in nitric acid and hydrogen peroxide by closed-microvessel microwave digestion. Phosphorus determination was performed with an optimized analytical method using a double-focusing sector field inductively coupled plasma mass spectrometer (ICP-SFMS) and quadrupole-based ICP-MS (ICP-QMS). For quality control of phosphorus determination a certified reference material (CRM), single cell proteins (BCR 273) with a high phosphorus content of 26.8+/-0.4 mg g(-1), was analyzed. For studies on phosphorus determination in proteins while reducing the sample amount as low as possible the homogeneity of CRM BCR 273 was investigated. Relative standard deviation and measurement accuracy in ICP-QMS was within 2%, 3.5%, 11% and 12% when using CRM BCR 273 sample weights of 40 mg, 5 mg, 1 mg and 0.3 mg, respectively. The lowest possible sample weight for an accurate phosphorus analysis in protein samples by ICP-MS is discussed. The analytical method developed was applied for the analysis of homogeneous protein samples in very low amounts [1-100 micro g of solid protein sample, e.g. beta-casein or down to 1 micro L of protein or digest in solution (e.g., tau protein)]. A further reduction of the diluted protein solution volume was achieved by the application of flow injection in ICP-SFMS, which is discussed with reference to real protein digests after protein separation using 2D gel electrophoresis.The detection limits for phosphorus in biological samples were determined by ICP-SFMS down to the ng g(-1) level. The present work discusses the figure of merit for the determination of phosphorus in a small amount of protein sample with ICP-SFMS in comparison to ICP-QMS.  相似文献   

17.
Molecular size distribution patterns of Cu, Mn, Ni, and Zn were determined in several nut species by size-exclusion liquid chromatography (SEC) coupled on-line to UV and inductively coupled plasma mass spectrometry (ICP–MS) for detection. The molecular weight (MW) fractionation of the different metals was performed with a Superdex Peptide column, injecting 100 L of the extracted solutions. The association of the elements with different MW fractions was observed with sequential detection by UV and ICP–MS. Various separation conditions were evaluated to obtain proper resolution and reproducible results with the size-exclusion column. Complete MW information of the elemental fractions in the nut samples was obtained within a retention time of 30 min. Fractionation of the above mentioned elements was done in nine different nut species commonly found in commercial markets. Variability of the fractionation patterns for two different extraction media, 0.05 mol L–1 NaOH and 0.05 mol L–1 HCl, was evaluated for every nut sample. Differences in the elemental fractionation patterns were found depending on the extraction procedure, nut species, and the type of element studied. It was also observed that the elements studied showed predominant association with high MW fractions when extracted with basic solution whereas with acidic extraction media only low MW fractions were obtained.  相似文献   

18.
Isotope-dilution analysis in combination with GC-ICP-MS detection has been applied to the determination of butyltin species in environmental samples. Different spikes containing the isotopically labeled butyltin species have been synthesized in the laboratory after optimization of the reaction conditions. The isotopic compositions of the tin species in the different spike solutions were determined by GC-ICP-MS after derivatization by aqueous ethylation with sodium tetraethylborate. Reverse isotope-dilution analysis was used for quantitation of the spike solutions by means of natural MBT, DBT, and TBT standards. The mixed spikes were used for simultaneous analysis of MBT, DBT and TBT in the certified reference materials, PACS-2, CRM 462, and CRM 646, with satisfactory results. The excellent agreement of the different speciation results obtained by use of the different spikes is a good indicator of the precision, accuracy, and reliability which can be achieved by using isotope-dilution analysis for trace metal speciation.Application of a double spike containing (119)Sn-enriched MBT (79.7 At%), (118)Sn-enriched DBT (86.7 At%), and (119)Sn-enriched TBT (83.1 At%) also enabled evaluation of the conditions resulting in quantitative extraction of the species from the solid matrix, in combination with possible alterations depending on the different extraction procedures used (mechanical shaking, ultrasounds, and microwaves). Mathematical equations used for this purpose computed the correct species concentrations directly and, additionally, the decomposition factors (from TBT to DBT and from DBT to MBT) after precise measurement of the (119)Sn/(120)Sn and (118)Sn/(120)Sn ratios for all butyltin species by GC-ICP-MS.  相似文献   

19.
In the framework of developing analyses for exogenous contaminants in food matrices such as honey, we have compared data obtained by high-performance liquid chromatography coupled with mass spectrometry (LC–MS) to those provided by high-performance liquid chromatography and tandem mass spectrometry (LC–MS–MS). Initial results obtained with LC–MS showed that the technique lacked selectivity, which is why the method was validated by LC–MS–MS. This method involves a solid-phase extraction (SPE) of nitrofuran metabolites and nitrofuran parent drugs, a derivatization by 2-nitrobenzaldehyde for 17 h, and finally a clean-up by SPE. The data obtained show that the limits of detection varied between 0.2 and 0.6 μg kg−1 for the metabolites and between 1 and 2 μg kg−1 for nitrofuran parent drugs. The method was applied to different flower honeys. The results showed that nitrofurans (used as antibiotics) are consistently present in this matrix, the predominant compound being furazolidone. Figure Working bees  相似文献   

20.
Li  Zhiping  Li  Qin  Wang  Yi  Cao  Di  Chen  Chao 《Chromatographia》2012,75(9-10):533-539

A sensitive and specific liquid chromatography electrospray ionization-tandem mass spectrometry method for determination of total and free piperacillin–tazobactam in human plasma has been developed and validated. Plasma deproteinization was achieved with Amicon® Ultra-0.5 mL centrifugal filter device (Millipore, Bedford, USA). Chromatography was performed on a Capcell Pak C18 MG column (ID 2 mm × 100 mm, 5 μm, Shiseido, Kyoto, Japan) with isocratic elution using a mobile phase containing water and acetonitrile with an addition of 0.02% of formic acid. Detection was achieved by an Applied Biosystems API 3000 triple quadrupole mass spectrometer (ABI-SCIEX, Toronto, Canada). Electrospray ionization (ESI) was used for ion production. The limits of quantification were 100 ng mL−1 for piperacillin and 30 ng mL−1 for tazobactam. The precision and accuracy for both intra- and inter-day determination of piperacillin ranged from 2.8 to 9.1% and from 94.9 to 104.4%. The precision and accuracy for intra- and inter-day determination of tazobactam ranged from 2.9 to 9.3% and from 88.9 to 99.8%. The precision and accuracy for intra- and inter-day determination of free piperacillin ranged from 4.4 to 14.7% and from 89.0 to 109.6%. The precision and accuracy for intra- and inter-day determination of free tazobactam ranged from 2.8 to 14.4% and from 93.9 to 108.0%. Fifty and 150 μL plasma were used for total and free piperacillin–tazobactam analysis, respectively. The validation results of this analytical method made it feasible for being used in a further pilot study of population pharmacokinetics of piperacillin–tazobactam in neonates.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号