首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The ultraviolet photolysis of low concentrations of CH(2)XI (X = Cl, Br, I) were investigated in water and saltwater solutions by photochemistry and picosecond time-resolved resonance Raman spectroscopy. Photolysis in both kinds of solutions formed mostly CH(2)(OH)(2) and HI and HX products. However, photolysis of the CH(2)XI molecules in saltwater resulted in production of some CH(2)XCl products not observed in aqueous solutions without salt present. The appearance of these new products in saltwater solutions is accompanied by a decrease in the amount of CH(2)(OH)(2), HI, and HX products compared to photolysis in aqueous solutions without salt present. The possible implications for photolysis of CH(2)XI and other polyhalomethanes in seawater and other salt aqueous environments compared to nonsaltwater solvated environments is briefly discussed.  相似文献   

2.
A combined experimental and theoretical investigation of the ultraviolet photolysis of CH2XI (where X = Cl, Br, I) dihalomethanes in water is presented. Ultraviolet photolysis of low concentrations of CH2XI (where X = Cl, Br, I) in water appears to lead to almost complete conversion into CH2(OH)2 and HX and HI products. Picosecond time-resolved resonance Raman (ps-TR3) spectroscopy experiments revealed that noticeable amounts of CH2X-I isodihalomethane intermediates were formed within several picoseconds after photolysis of the CH2XI parent compound in mixed aqueous solutions. The ps-TR3 experiments in mixed aqueous solutions revealed that the decay of the CH2X-I isodihalomethane intermediates become significantly shorter as the water concentration increases, indicating that the CH2X-I intermediates may be reacting with water. Ab initio calculations found that the CH2X-I intermediates are able to react relatively easily with water via a water-catalyzed O-H insertion/HI elimination reaction to produce CH2X(OH) and HI products, with the barrier for these reactions increasing as X changes from Cl to Br to I. The ab initio calculations also found that the CH2X(OH) product can undergo a water-catalyzed HX elimination reaction to make H2C=O and HX products, with the barrier to reaction decreasing as X changes from Cl to Br to I. The preceding two water-catalyzed reactions produce the HI and HX leaving groups observed experimentally, and the H2C=O product further reacts with water to make the other CH2(OH)2 product observed in the photochemistry experiments. This suggests that that the CH2X-I intermediates react with water to form the CH2(OH)2 and HI and HX products observed in the photochemistry experiments. Ultraviolet photolysis of CH2XI (where X = Cl, Br, I) at low concentrations in water-solvated environments appears to lead to efficient dehalogenation and release of two strong acid leaving groups. We very briefly discuss the potential influence of this photochemistry in water on the decomposition of polyhalomethanes and halomethanols in aqueous environments.  相似文献   

3.
A combined experimental and theoretical study of the ultraviolet photolysis of CH2I2 in water is reported. Ultraviolet photolysis of low concentrations of CH2I2 in water was experimentally observed to lead to almost complete conversion into CH2(OH)2 and 2HI products. Picosecond time-resolved resonance Raman spectroscopy experiments in mixed water/acetonitrile solvents (25%-75% water) showed that appreciable amounts of isodiiodomethane (CH2I-I) were formed within several picoseconds and the decay of the CH2I-I species became substantially shorter with increasing water concentration, suggesting that CH2I-I may be reacting with water. Ab initio calculations demonstrate the CH2I-I species is able to react readily with water via a water-catalyzed O--H-insertion and HI-elimination reaction followed by its CH2I(OH) product undergoing a further water-catalyzed HI-elimination reaction to make a H2C=O product. These HI-elimination reactions produce the two HI leaving groups observed experimentally and the H2C=O product further reacts with water to produce the other final CH2(OH)2 product observed in the photochemistry experiments. These results suggest that CH2I-I is the species that reacts with water to produce the CH2(OH)2 and 2HI products seen in the photochemistry experiments. The present study demonstrates that ultraviolet photolysis of CH2I2 at low concentration leads to efficient dehalogenation and release of multiple strong acid (HI) leaving groups. Some possible ramifications for the decomposition of polyhalomethanes and halomethanols in aqueous environments as well as the photochemistry of polyhalomethanes in the natural environment are briefly discussed.  相似文献   

4.
Russian Chemical Bulletin - The photochemistry of aqueous solutions of the cis,trans-[PtIV(en)(I)2(CH3COO)2] complex (1) was studied by stationary photolysis, nanosecond laser flash photolysis and...  相似文献   

5.
The photochemistry of various Roussin's red ester compounds of the general formula Fe(2)(SR)(2)(NO)(4), where R = CH(3), CH(2)CH(3), CH(2)C(6)H(5), CH(2)CH(2)OH, and CH(2)CH(2)SO(3)(-), were investigated. Continuous photolyses of these ester compounds in aerated solutions led to the release of NO with moderate quantum yields for the photodecomposition of the ester (Phi(RSE) = 0.02-0.13). Electrochemical studies using an NO electrode demonstrated that 4 mol of NO are generated for each mole of ester undergoing photodecomposition. Nanosecond flash photolysis studies of Fe(2)(SR)(2)(NO)(4) (where R = CH(2)CH(2)OH and CH(2)CH(2)SO(3)(-)) indicate that the initial photoreaction is the reversible dissociation of NO. In the absence of oxygen, the presumed intermediate, Fe(2)(SR)(2)(NO)(3), undergoes second-order reaction with NO to regenerate the parent cluster with a rate constant of k(NO) = 1.1 x 10(9) M(-1) s(-1) for R = CH(2)CH(2)OH. Under aerated conditions the intermediate reacts with oxygen to give permanent photochemistry.  相似文献   

6.
Phosphorus functionalized trimeric alanine compounds (l)- and (d)-P(CH(2)NHCH(CH(3))COOH)(3) 2 are prepared in 90% yields by the Mannich reaction of Tris(hydroxymethyl)phosphine 1 with (l)- or (d)- Alanine in aqueous media. The hydration properties of (l)-2 and (d)-2 in water and water-methanol mixtures are described. The crystal structure analysis of (l)-2.4H(2)O, reveals that the alanine molecules pack to form two-dimensional bilayers running parallel to (001). The layered structural motif depicts two closely packed monolayers of 2 each oriented with its phosphorus atoms projected at the center of the bilayer and adjacent monolayers are held together by hydrogen bonds between amine and carboxylate groups. The water bilayers are juxtaposed with the H-bonded alanine trimers leading to 18-membered (H(2)O)(18) water rings. Exposure of aqueous solution of (l)-2 and (d)-2 to methanol vapors resulted in closely packed (l)-2 and (d)-2 solvated with mixed water-methanol (H(2)O)(15)(CH(3)OH)(3) clusters. The O-O distances in the mixed methanol-water clusters of (l)-2.3H(2)O.CH(3)OH and (d)-2.3H(2)O.CH(3)OH (O-O(average) = 2.857 A) are nearly identical to the O-O distance observed in the supramolecular (H(2)O)(18) water structure (O-O(average) = 2.859 A) implying the retention of the hydrogen bonded structure in water despite the accommodation of hydrophobic methanol groups within the supramolecular (H(2)O)(15)(CH(3)OH)(3) framework. The O-O distances in (l)-2.3H(2)O.CH(3)OH and (d)-2.3H(2)O.CH(3)OH and in (H(2)O)(18) are very close to the O-O distance reported for liquid water (2.85 A).  相似文献   

7.
The interface between water and mixed surfactant solutions of CH(3)(CH(2))(19)OH and CF(3)(CF(2))(7)(CH(2))(2)OH in hexane was studied with interfacial tension and X-ray reflectivity measurements. Measurements of the tension as a function of temperature for a range of total bulk surfactant concentrations and for three different values of the molal ratio of fluorinated to total surfactant concentration (0.25, 0.28, and 0.5) determined that the interface can be in three different monolayer phases. The interfacial excess entropy determined for these phases suggests that two of the phases are condensed single surfactant monolayers of CH(3)(CH(2))(19)OH and CF(3)(CF(2))(7)(CH(2))(2)OH. By studying four different compositions as a function of temperature, X-ray reflectivity was used to determine the structure of these monolayers in all three phases at the liquid-liquid interface. The X-ray reflectivity measurements were analyzed with a layer model to determine the electron density and thickness of the headgroup and tailgroup layers. The reflectivity demonstrates that phases 1 and 2 correspond to an interface fully covered by only one of the surfactants (liquid monolayer of CH(3)(CH(2))(19)OH in phase 1 and a solid condensed monolayer of CF(3)(CF(2))(7)(CH(2))(2)OH in phase 2). This was determined by analysis of the electron density profile as well as by direct comparison to reflectivity studies of the liquid-liquid interface in systems containing only one of the surfactants (plus hexane and water). The liquid monolayer of CH(3)(CH(2))(19)OH undergoes a transition to the solid monolayer of CF(3)(CF(2))(7)(CH(2))(2)OH with increasing temperature. Phase 3 and the transition regions between phases 1 and 2 consist of a mixed monolayer at the interface that contains domains of the two surfactants. In phase 3 the interface also contains gaseous regions that occupy progressively more of the interface as the temperature is increased. The reflectivity determined the coverage of the surfactant domains at the interface. A simple model is presented that predicts the basic features of the domain coverage as a function of temperature for the mixed surfactant system from the behavior of the single surfactant systems.  相似文献   

8.
Ultraviolet photolysis of low concentrations of CH2I2 in methanol solution found that CH2I2 is converted into dimethoxymethane and some H+ and I- products. Picosecond time-resolved resonance Raman (ps-TR3) experiments observed that the isodiiodomethane (CH2I-I) photoproduct decayed faster as the concentration of methanol increases, suggesting that isodiiodomethane is reacting with methanol. Ab initio calculations indicate isodiiodomethane is able to react with methanol via an O-H insertion/HI elimination to form an iodoether (ICH2-O-CH3) and HI products. The iodoether can then further react via another O-H insertion/HI elimination reaction to form the dimethoxymethane (CH3-O-CH2-O-CH3) observed in the photochemistry experiments. A reaction mechanism consistent with these experimental and theoretical observations is proposed.  相似文献   

9.
The coupling of TiO(2) and transition metal complexes is attempted with the aim of higher functionalization of the TiO(2) photocatalyst. UV irradiation (lambda(ex)>300 nm) of a TiO(2) suspension containing equimolar aqueous solutions of FeCl(3) and K(3)[Fe(CN)(6)] forms uniform thin films of "water-insoluble Prussian blue" (PB, Fe(4)(3+) [Fe(II)(CN)(6)](3)) on the surface of TiO(2) particles. The PB photodeposition is enhanced significantly by the addition of a small amount of CH(3)OH in both the rutile and anatase TiO(2) systems. The activity of anatase TiO(2) is greater than that of rutile in the presence of CH(3)OH (2.46 M) by a factor of 1.6+/-0.2, whereas the activities are comparable in the absence of CH(3)OH. These results are discussed on the basis of a proposed reaction mechanism. Copyright 2001 Academic Press.  相似文献   

10.
Rate coefficients for the gas-phase reaction of the OH radical with (E)-2-pentenal (CH(3)CH(2)CH[double bond]CHCHO), (E)-2-hexenal (CH(3)(CH(2))(2)CH[double bond]CHCHO), and (E)-2-heptenal (CH(3)(CH(2))(3)CH[double bond]CHCHO), a series of unsaturated aldehydes, over the temperature range 244-374 K at pressures between 23 and 150 Torr (He, N(2)) are reported. Rate coefficients were measured under pseudo-first-order conditions in OH with OH radicals produced via pulsed laser photolysis of HNO(3) or H(2)O(2) at 248 nm and detected by pulsed laser-induced fluorescence. The rate coefficients were independent of pressure and the room temperature rate coefficients and Arrhenius expressions obtained are (cm(3) molecule(-1) s(-1) units): k(1)(297 K)=(4.3 +/- 0.6)x 10(-11), k(1)(T)=(7.9 +/- 1.2)x 10(-12) exp[(510 +/- 20)/T]; k(2)(297 K)=(4.4 +/- 0.5)x 10(-11), k(2)(T)=(7.5 +/- 1.1)x 10(-12) exp[(520 +/- 30)/T]; and k(3)(297 K)=(4.4 +/- 0.7)x 10(-11), k(3)(T)=(9.7 +/- 1.5)x 10(-12) exp[(450 +/- 20)/T] for (E)-2-pentenal, (E)-2-hexenal and (E)-2-heptenal, respectively. The quoted uncertainties are 2sigma(95% confidence level) and include estimated systematic errors. Rate coefficients are compared with previously published room temperature values and the discrepancies are discussed. The atmospheric degradation of unsaturated aldehydes is also discussed.  相似文献   

11.
The photophysics and photochemistry of the salt [(bpy)Re(CO)(3)(py)(+)][BzBPh(3)(-)] (ReBo, where bpy = 2,2'-bipyridine, py = pyridine, Bz = C(6)H(5)CH(2) and Ph = C(6)H(5)) has been investigated in THF and CH(3)CN solutions. UV-visible absorption and steady-state emission spectroscopy indicates that in THF ReBo exists primairly as an ion-pair. A weak absorption band is observed for the salt in THF solution that is assigned to an optical ion-pair charge transfer transition. Stern-Volmer emission quenching studies indicate that BzBPh(3)(-) quenches the luminescent dpi (Re) --> pi (bpy) metal-to-ligand charge transfer excited state of the (bpy)Re(CO)(3)(py)(+) chromophore. The quenching is attributed to electron transfer from the benzylborate anion to the photoexcited Re(I) complex, (bpy(-)(*))Re(II)(CO)(3)(py)(+) + BzBPh(3)(-) --> (bpy(-)(*))Re(I)(CO)(3)(py) + BzBPh(3)(*). Laser flash photolysis studies reveal that electron transfer quenching leads to irreversible reduction of the Re(I) cation to (bpy(-)(*))Re(I)(CO)(3)(py). Photoinduced electron transfer is irreversible owing to rapid C-B bond fragmentation in the benzylboranyl radical, PhCH(2)BPh(3)(*) --> PhCH(2)(*) + BPh(3)(*). Quantitative laser flash photolysis experiments show that the quantum efficiency for production of the reduced complex (bpy(-)(*))Re(I)(CO)(3)(py) is unity, suggesting that C-B bond fragmentation in the benzylboranyl radical occurs more rapidly than return electron transfer within the geminate radical pair that is formed by photoinduced electron transfer.  相似文献   

12.
Chlorocobalt(III) tetraphenylporphyrin, (Cl)CoIIITPP, reacts with potassium cyanide in dichloromethane or benzene containing 18-crown-6 to give a green solution of [crown-K+][(CN)2CoIIITPP-]. The molecular structure of [crown-K+][(CN)2CoIIITPP-] is identified by X-ray crystallography. In methanol, (Cl)CoIIITPP plus KCN also gives a green solution of [(CN)2CoIIITPP-]. The green methanol solution containing 1.4 x 10(-4) M KCN turns orange by continuous photolysis with a 250-W mercury lamp for 5 min. The orange solution returns to green when it is kept in the dark for 5 min. The kinetic study suggests that [(CN)2CoIIITPP-] dissociates CN- by continuous photolysis, giving rise to the formation of the orange species, (CH3OH)(CN)CoIIITPP. The photoproduct, (CH3OH)(CN)CoIIITPP, regenerates the green species, [(CN)2CoIIITPP-], by reaction with CN-. The laser photolysis study of [(CN)2CoIIITPP-] in methanol demonstrates that photodissociation of CN- takes place within 20 ns after the 355-nm laser pulse, resulting in the formation of two transients, I (short-lived) and II (long-lived). The absorption spectra of both transients are similar to that of (CH3OH)(CN)CoIIITPP. These transients eventually return to [(CN)2CoIIITPP-]. The decay of species I follows first-order kinetics with a rate constant k. = 2 x 10(6) s-1, independent of the concentration of KCN. Species II is identified as (CH3OH)(CN)CoIIITPP, which is observed with the continuous photolysis of the solution. The laser photolysis of [crown-K+][(CN)2COIIITPP-] in dichloromethane gives the transient species, which goes back to the original complex according to first-order kinetics with a rate constant k = 5 x 10(6) s-1. [crown-K+][(CN)2CoIIITPP-] is concluded to photodissociate the axial CN- to form [crown-K+CN-][(CN)CoIIITPP] in which an oxygen atom of the crown moiety in [crown-K+CN-] is coordinated to the cobalt(III) atom of [(CN)CoIIITPP] at the axial position. The intracomplex reverse reaction of [crown-K+CN-][(CN)CoIIITPP] leads to the regeneration of [crown-K+][(CN)2CoIIITPP-]. The structure and the reaction of the transient species I observed for [(CN)2CoIIITPP-] in methanol are discussed on the basis of the laser photolysis studies of [crown-K+][(CN)2CoIIITPP-] in dichloromethane.  相似文献   

13.
The microsolvation of cobalt and nickel dications by acetonitrile and water is studied by measuring photofragment spectra at 355, 532 and 560-660 nm. Ions are produced by electrospray, thermalized in an ion trap and mass selected by time of flight. The photodissociation yield, products and their branching ratios depend on the metal, cluster size and composition. Proton transfer is only observed in water-containing clusters and is enhanced with increasing water content. Also, nickel-containing clusters are more likely to undergo charge reduction than those with cobalt. The homogeneous clusters with acetonitrile M(2+)(CH(3)CN)(n) (n = 3 and 4) dissociate by simple solvent loss; n = 2 clusters dissociate by electron transfer. Mixed acetonitrile/water clusters display more interesting dissociation dynamics. Again, larger clusters (n = 3 and 4) show simple solvent loss. Water loss is substantially favored over acetonitrile loss, which is understandable because acetonitrile is a stronger ligand due to its higher dipole moment and polarizability. Proton transfer, forming H(+)(CH(3)CN), is observed as a minor channel for M(2+)(CH(3)CN)(2)(H(2)O)(2) and M(2+)(CH(3)CN)(2)(H(2)O) but is not seen in M(2+)(CH(3)CN)(3)(H(2)O). Studies of deuterated clusters confirm that water acts as the proton donor. We previously observed proton loss as the major channel for photolysis of M(2+)(H(2)O)(4). Measurements of the photodissociation yield reveal that four-coordinate Co(2+) clusters dissociate more readily than Ni(2+) clusters whereas for the three-coordinate clusters, dissociation is more efficient for Ni(2+) clusters. For the two-coordinate clusters, dissociation is via electron transfer and the yield is low for both metals. Calculations of reaction energetics, dissociation barriers, and the positions of excited electronic states complement the experimental work. Proton transfer in photolysis of Co(2+)(CH(3)CN)(2)(H(2)O) is calculated to occur via a (CH(3)CN)Co(2+)-OH(-)-H(+)(NCCH(3)) salt-bridge transition state, reducing kinetic energy release in the dissociation.  相似文献   

14.
Alkyl- and perfluoro-phosphonic acid derived SAMs were successfully formed on Mg alloy by liquid phase method for the first time. The chemical and anticorrosive properties of the prepared SAMs on magnesium alloys were characterized using contact angle measurements, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and electrochemical measurements. Water contact angle measurements revealed that the maximum advancing/receding water contact angles of n-octyl (OP: CH(3)(CH(2))(7)PO(OH)(2)), n-dodecyl (DP: CH(3)(CH(2))(11)PO(OH)(2)), n-octadecyl (ODP: CH(3)(CH(2))(17)PO(OH)(2)) phosphonic acid, and 2-(perfluorohexyl)ethyl (PFEP: CF(3)(CF(2))(5)CH(2)CH(2)PO(OH)(2)) phosphonic acid were 105.1/64.7°, 108.3/69.6°, 111.9/75.2°, and 115.2/67.4° respectively. In the case of alkylphosphonic acid SAMs (OP, DP, and ODP), the advancing and receding water contact angles increased with an increase in the preparation time. The angle-resolved XPS (AR-XPS) data revealed that the film thicknesses of the OP, DP, ODP, PFEP on Mg alloy were estimated to be 0.8, 1.2, 1.7, and 1.1 nm, respectively. The XPS O 1s data support that the phosphonic acid derived SAM is covalently bound to the oxide or hydroxide surface of the Mg alloy in a monodenate or bidenate manner. Chemical stability of the alkyl- and perfluoro-phosphonic acid modified Mg alloy surfaces was investigated using aqueous solutions at pH=4.0, 7.0, and 10.0. The contact angles of OP, DP, and PFEP modified Mg surface decreased rapidly within the first 5 min after immersion in all the aqueous solutions and were less than 20°. On the other hand, the contact angles of the ODP modified Mg alloy after immersion in aqueous solutions at pH 4, 7 and 10 for 5 min were 45.1°, 89.3,° and 85.5°, respectively. The ODP modified Mg alloy had highest chemical stability in four types of the phosphonic acid derived SAMs used in this study, indicating that the molecular density of ODP on Mg alloy would be higher than those of OP, DP, PFEP on Mg alloy. The corrosion resistance of ODP modified Mg alloy was investigated by potentiodynamic polarization curve measurements. The ODP modified Mg alloy exhibits protective properties in a solution containing Cl(-) ions compared to unmodified Mg alloy.  相似文献   

15.
The coordination of Cd(2+) with P(CH(2)OH)(3) (THP) in methanol was followed by (31)P and (111)Cd NMR techniques. A cadmium-to-phosphine coordination ratio of 1:3 has been established, and effective kinetic parameters have been calculated. Air oxidation of THP in the presence of CdCl(2) at room temperature produces coordination polymer (3)(∞)[Cd(3)Cl(6)(OP(CH(2)OH)(3))(2)] (1). The same oxidation reaction at 70 °C gives another coordination polymer, (∞)[CdCl(2)(OP(CH(2)OH)(3))] (2). Complexes 1 and 2 are the first structurally characterized complexes featuring OP(CH(2)OH)(3) as a ligand that acts as a linker between Cd atoms. The addition of NaBPh(4) to the reaction mixture gives coordination polymer (∞)[Na(2)CdCl(2)(O(2)P(CH(2)OH)(2))(2)(H(2)O)(3)] (3) with (HOCH(2))(2)PO(2)(-) as the ligand. Coordination polymers 1-3 have been characterized by X-ray analysis, elemental analysis, and IR spectroscopy.  相似文献   

16.
We report the first transmission of solvent-coordinated dipositive plutonyl ion, Pu(VI)O(2)(2+), from solution to the gas phase by electrospray ionization (ESI) of plutonyl solutions in water/acetone and water/acetonitrile. ESI of plutonyl and uranyl solutions produced the isolable gas-phase complexes, [An(VI)O(2)(CH(3)COCH(3))(4,5,6)](2+), [An(VI)O(2)(CH(3)COCH(3))(3)(H(2)O)](2+), and [An(VI)O(2)(CH(3)CN)(4)](2+); additional complex compositions were observed for uranyl. In accord with relative actinyl stabilities, U(VI)O(2)(2+) > Pu(VI)O(2)(2+) > Np(VI)O(2)(2+), the yields of plutonyl complexes were about an order of magnitude less than those of uranyl, and dipositive neptunyl complexes were not observed. Collision-induced dissociation (CID) of the dipositive coordination complexes in a quadrupole ion trap produced doubly- and singly-charged fragment ions; the fragmentation products reveal differences in underlying chemistries of plutonyl and uranyl, including the lower stability of Pu(VI) as compared with U(VI). Particularly notable was the distinctive CID fragment ion, [Pu(IV)(OH)(3)](+) from [Pu(VI)O(2)(CH(3)COCH(3))(6)](2+), where the plutonyl structure has been disrupted and the tetravalent plutonium hydroxide produced; this process was not observed for uranyl.  相似文献   

17.
The rate constants for the reaction OH + CH3C(O)OH --> products (1) were determined over the temperature range 287-802 K at 50 and 100 Torr of Ar or N2 bath gas using pulsed laser photolysis generation of OH by CH3C(O)OH photolysis at 193 nm coupled with OH detection by pulsed laser-induced fluorescence. The rate coefficient displays a complex temperature dependence with a sharp minimum at 530 K, indicating the competition between a reaction proceeding through a pre-reactive H-bonded complex to form CH3C(O)O + H2O, expected to prevail at low temperatures, and a direct methyl-H abstraction channel leading to CH2C(O)OH + H2O, which should dominate at high temperatures. The temperature dependence of the rate constant can be described adequately by k1(287-802 K) = 2.9 x 10(-9) exp{-6030 K/T} + 1.50 x 10(-13) exp{515 K/T} cm3 molecule(-1)(s-1), with a value of (8.5 +/- 0.9) x 10-13 cm3 molecule(-1)(s-1) at 298 K. The steep increase in rate constant in the range 550-800 K, which is reported for the first time, implies that direct abstraction of a methyl-H becomes the dominant pathway at temperatures greater than 550 K. However, the data indicates that up to about 800 K direct methyl-H abstraction remains adversely affected by the long-range H-bonding attraction between the approaching OH radical and the carboxyl -C(O)OH functionality.  相似文献   

18.
The novel water-soluble ruthenium(II) complexes [RuCl(2)(eta(6)-arene)[P(CH(2)OH)(3)]]2a-c and [RuCl(eta(6)-arene)[P(CH(2)OH)(3)](2)][Cl]3a-c have been prepared in high yields by reaction of dimers [[Ru(eta(6)-arene)(micro-Cl)Cl](2)](arene = C(6)H(6)1a, p-cymene 1b, C(6)Me(6)1c) with two or four equivalents of P(CH(2)OH)(3), respectively. Complexes 2/3a-c are active catalysts in the redox isomerization of several allylic alcohols into the corresponding saturated carbonyl compounds under water/n-heptane biphasic conditions. Among them, the neutral derivatives [RuCl(2)(eta(6)-C(6)H(6))[P(CH(2)OH)(3)]]2a and [RuCl(2)(eta(6)-p-cymene)[P(CH(2)OH)(3)]]2b show the highest activities (TOF values up to 600 h(-1); TON values up to 782). Complexes 2/3a-c also catalyze the hydration of terminal alkynes.  相似文献   

19.
Radiolytic reduction of BiOClO4 in aqueous solutions leads to the formation of bismuth clusters and larger nanoparticles. The mechanisms of redox reactions of the polycationic Bi(III) species that exist in the solution were investigated with pulse radiolysis. The kinetic and spectral properties of the transients formed by the reaction of these species with the primary radicals from water radiolysis are reported. The single-electron reduction product, Bi9(OH)224+, absorbs at lambdamax = 273 nm, while the OH adduct, Bi9(OH)235+, has a broad absorption spectrum with a maximum at 280 nm and a shoulder at 420 nm. Several rate constants were measured: k (e-aq + Bi9(OH)225+) = 1.2 x 1010 M-1 s-1 and k (OH + Bi9(OH)225+) = 1.5 x 109 M-1 s-1. The reduced species, Bi9(OH)224+ further reacts with (CH3)2COH radicals, but not with CH2C(CH3)2OH radicals from t-butanol, to produce a doubly reduced polynuclear species. A few reactions of the reduction of the Bi salt in the presence of poly(acrylic acid) are also described. In the presence of the polymer, a metal-polymer complex is formed prior to the irradiation, and the reduction reactions are significantly slowed down.  相似文献   

20.
The cesium salt of the icosahedral borane anion dodecahydroxy-closo-dodecaborate(2-), Cs(2)[closo-B(12)(OH)(12)], Cs(2)1, was prepared by heating cesium dodecahydro-closo-dodecaborate(2-), Cs(2)[closo-B(12)H(12)], Cs(2)2, with 30% hydrogen peroxide. The other alkali metal salts A(2)1 (A = Li, Na, K, Rb) precipitated upon addition of ACl to warm aqueous solutions of Cs(2)1. The ammonium salt, [NH(4)](2)1, and the (mu-nitrido)bis(triphenylphosphonium) salt, [PPN](2)1, were obtained similarly. The [H(3)O](2)1 salt precipitated upon acidification of aqueous solutions of Cs(2)1 with hydrochloric acid. The solubility of these salts in water was determined by measuring the boron content of saturated aqueous solutions of A(2)1 (A = Li, Na, K, Rb, Cs), [H(3)O](2)1, and [NH(4)](2)1 using ICP-AES. Although these salts are derived from a dianion with twelve pendant hydroxyl groups, the alkali metal salts surprisingly displayed low water solubilities. Water solubility decreases with a decrease in the radius of A(+), except for the lithium salt, which is slightly more soluble than the potassium salt. The [H(3)O](2)1 and the [NH(4)](2)1 salts provide rare examples of water-insoluble hydronium and ammonium salts. The low water solubility of the A(2)1 salts is attributed to the dianion's pendant hydroxyl groups, which appear to function as cross-linking ligands. Four alkali metal salts, A(2)1 (A = Na, K, Rb, Cs), were characterized in the solid state by single-crystal X-ray crystallography. These data revealed intricate networks in which several anions are complexed through their hydroxyl groups to each alkali metal cation. In addition, the anions are engaged in hydrogen bonding with each other and, if present, with water of hydration. This cross-linking results in the precipitation of aggregated salts. Cation coordination numbers decrease with cation radius. Thus, cesium and rubidium are ten-coordinate, whereas potassium is seven-coordinate and sodium is six-coordinate. The geometry of anion 1(2)(-) is independent of cation identity; the B-B and B-O bond lengths of the various A(2)1 salts (A = Na, K, Rb, Cs) are identical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号