首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 370 毫秒
1.
This paper demonstrates the preparation of europium (Eu3+) doped silica microspheres using the W/O microencapsulation method. The water phase (W phase) solution is composed of partially hydrolyzed tetraethyl orthosilicate and acetylsalicylic acid acting as hydrophilic active agents. The Eu(NO)3·H2O was added into the W phase solution before mixing with the oil phase solution. Under a controlled stirring treatment, the W/O emulsion is obtained by dispersing the W phase solution in cyclohexene containing Span60 as the surfactant. 3-aminopropyl-triethoxysilane (APTES) is used as a gelling agent to encapsulate the micelles and Eu3+ doped silica microspheres with a mean size of around 2???m can be obtained. The experimental parameters, such as the W/O ratio, stirring condition, the amount of APTES added and the temperature, are modified and their effects on the morphology and homogeneity of the resulting Eu3+ doped silica microspheres are systematically studied. The Eu3+ ions are successfully confined inside the silica microcapsules, exhibiting an optimal red emission with a doping concentration of 3?mol%.  相似文献   

2.
A simple and low-cost process has been developed for the production of mesoporous silica microspheres using a non-ionic surfactant as a template in an aqueous acidic sodium silicate solution prepared from rice husk. The influences of synthesis parameters such as the sodium silicate concentration, hydrochloric acid concentration, temperature and aging time on the morphology and on particle size range are described. The product’s physical and normal phase chromatographic properties are reported.  相似文献   

3.
This study deals with the use of ethanol as washing solvent in the preparation of the silica gels from sodium silicate in order to enhance the textural properties, especially surface area. We here examined the effect of ethanol-washing on surface area, micro- and mesopore volume, and average pore size. The silica xerogels prepared from sodium silicate solution exhibited an extremely high surface area of 1139 m2/g by washing their hydrogels with ethanol. Compared to water-washed xerogels, ethanol-washed xerogels showed higher surface areas, total pore volumes, and larger average pore sizes. Unlike the surface area of water-washed xerogel, that of the ethanol-washed xerogel was not affected by the silica concentration of initial solution. This study indicates that the textural properties of sodium silicate-derived xerogels are further enhanced by using ethanol as washing solvent.  相似文献   

4.
The effects of preparation method and precursor composition on the leaching behavior of the anthraquinone dye Solvent Blue 59 incorporated into silica based xerogels have been studied. Xerogels were prepared under acidic conditions from mixtures of 20 mol% of organically modified silicon alkoxides, R–Si(OR)3, in Si(OR)4 (R = methyl or ethyl, R = methyl, vinyl, phenyl). The dye was added at the beginning of the sol-gel reaction. The reaction was carried out by either hydrolysis under acidic conditions or acidolysis by formic acid. The dye incorporated was leached with refluxing ethanol using a Soxhlet extraction procedure to simulate the long-term stability of the samples prepared. With increasing size of organic substituent (methyl < vinyl < phenyl), the amount of dye leached decreases. Results from nitrogen adsorption experiments show that all samples characterized have about the same average pore diameter, but they differ in total pore volume and BET surface area. With increasing size of the organic residue, the pore volume decreases by an order of magnitude. Therefore, it is concluded that the microstructure of the xerogels prepared determines the retention behavior of dyes incorporated during the sol-gel reaction.  相似文献   

5.
Cinnamoyl alginate microspheres were prepared using the water droplets of W/O emulsions as a template. Cinnamoyl alginates having variable content of the cinnamoyl group were prepared by a condensation reaction. The photo-dimerization degree of the cinnamoyl group increased as the molar ratio of pyranose unit/cinnamoyl group increased from 1:0.043 to 1:0.18. The air/water interfacial activity of cinnamoyl alginate also increased with increasing the molar ratio. Aqueous solution of cinnamoyl alginate was dispersed in mineral oil to obtain W/O emulsion. UV light (254 nm, 6 W) was irradiated to the emulsion to dimerize the cinnamoyl groups, and CaCl2 was added to the emulsion to cross-link the cinnamoyl alginate. The surface of UV-treated microspheres was rougher than that of UV-untreated microspheres, possibly due to the photo-dimerization-induced tension on the alginate chains. The release degrees for 24 hours of fluorescein isothiocyanate-dextran (FITC-dextran; MW 4000) from UV-treated microspheres were markedly higher than those from UV-untreated ones. This is possibly due to the intramolecular dimerization of cinnamoyl group. The UV irradiation-induced percentage increase in the maximum release degree was greater as the content of cinnamoyl group was higher.  相似文献   

6.
Bifunctional periodic mesoporous organosilica materials with and without cobalt ion incorporation were synthesized by co-condensation of 1,2-bistrimethoxysilylethane (BTME) with 3-glycidoxypropyltriethoxysilane (GPTS) in the presence of cetyltrimethylammonium bromide. Nitrogen gas adsorption on samples with varying ratios of BTME:GPTS revealed that increasing the amount of GPTS affects pore size, surface area and pore volume as well as shapes of the isotherms and hysteresis loops. The hysteresis loops of the Type IV isotherms obtained for GPTS-modified ethane silica materials (without cobalt ion) change from Type H3 to Type H4 with increasing GPTS content. There is a tendency for pore sizes to change from mesopore to micropore when the amount of GPTS is increased. Isotherms of cobalt ion incorporated GPTS-modified ethane silica materials change from Type IV to Type I with increasing GPTS content. The surface area, pore volume and pore diameter decrease with increasing loading of GPTS as well as after cobalt ion incorporation. Thermogravimetric analysis and differential thermal analysis show that the surfactant is removed by solvent extraction. Cobalt ion incorporation is confirmed by powder X-ray diffraction and Raman spectroscopy.  相似文献   

7.
本文在存在十二烷基苯磺酸钠时利用正硅酸乙酯水解液中尿素和甲醛的结晶性聚合反应合成得到了氧化硅微球。首次考察了尿素和甲醛的物质的量比、尿素和甲醛的总用量、正硅酸乙酯(TEOS)用量、酸用量、以及十二烷基苯磺酸钠用量对所得氧化硅微球结构和形貌特征的影响。适当选择这些用量范围可以得到结构稳定、分散均匀的氧化硅微球。在微球生长中尿素和甲醛的量不足时,其突出的结晶性聚合与氧化硅杂化反应进程相互影响,导致了氧化硅微球核壳结构的形成。酸用量增加使氧化硅微球的孔径分布从复杂的双峰转变成均匀的单峰。表面活性剂的使用使氧化硅微球的孔分布从0~80 nm范围内的连续分布转化成单一分布。这些结果对正硅酸乙酯水解液直接合成氧化硅微球方法的推广和应用具有重要指导意义。  相似文献   

8.
A method for the production of near-monodispersed spherical silica particles with controllable porosity based on the formation of uniform emulsion droplets using membrane emulsification is described. A hydrophobic metal membrane with a 15 μm pore size and 200 μm pore spacing was used to produce near-monodispersed droplets, with a mean size that could be controlled between 65 and 240 μm containing acidified sodium silicate solution (with 4 and 6 wt % SiO(2)) in kerosene. After drying and shrinking, the final silica particles had a mean size in the range between 30 and 70 μm. The coefficient of variation for both the droplets and the particles did not exceed 35%. The most uniform particles had a mean diameter of 40 μm and coefficient of variation of 17%. By altering the pH of the sodium silicate solution and aging the gel particles in water or acetone, the internal structure of the silica particles was successfully modified, and both micro- and mesoporous near-monodispersed spherical particles were produced with an average internal pore size between 1 and 6 nm and an average surface area between 360 and 750 m(2) g(-1). A material balance and particle size analysis provided identical values for the internal voidage of the particles, when compared to the voidage as determined by BET analysis.  相似文献   

9.
In this Article, we addressed a facile method for the fabrication of porous polyimide film with an ordered surface based on the solvent-evaporation-assisted in situ self-assembly of polyamic acid (PAA, precursor of polyimide) and silica microspheres during vacuum-drying of PAA/silica colloid solution. Hydroxyl groups on the surface of silica microspheres have strong hydrogen-bonding with PAA chains, which improve the dispersion of silica microspheres in PAA/DMF solution and further help the self-assembly of PAA/silica colloid solution via solvent evaporation. The approach is simple, neither the preparation of special template nor complex preparation process and precise control over condition is necessary. Furthermore, the method could be employed for mass production of ordered porous polyimide films, and by changing the content and size of silica microspheres, the pore size and porous structure of the porous polyimide films could be tunable. The wettability behavior of the as-prepared porous polyimide films is also studied; the ordered surface topography of the porous polyimide films could change the wettability from hydrophilicity to hydrophobicity.  相似文献   

10.
Biodegradable polyesteramide copolymer P(CL/AU) based on -caprolactone and 11-aminoundecanoic acid was synthesized by the melt polycondensation method. Polyesteramide (PEA) microspheres were prepared by a simple O/W emulsion solvent evaporation method. The effects of variations in preparation parameters (such as emulsifier concentration, polymer concentration, polymer solution adding rate, stirring rate, and whether vacuum was applied) were studied in detail. The obtained microsphere morphologies were observed using an optical microscope and via scanning electron microscopy (SEM). The particle size distribution was determined using a Malvern laser particle sizer. When the PEA microspheres were incubated in PBS saline, the particle size increased at first, and then decreased after a longer time period; the theory that this behavior was due to degradation of the microspheres was confirmed by SEM.  相似文献   

11.
The concentration of silica in water samples from the desert area of Xinjiang, N. W. China, has been measured by colorimetry with ammonium molybdate. The observed pattern of dependence of the concentration of silica on the concentration of sodium ion (Na+) in the water samples is consistent with the pattern obtained by experiments on in-vitro dissolution of silica gel in sodium chloride (NaCl) solution. This indicates that the dissolution of silica in the hydrologic system in this area depends on the concentration of Na+. Calcium ion (Ca2+), which is known to play an important role on the dissolution of silica on the basis of in-vitro experiments, was observed to take little part in the dissolution of silica in actual natural water samples. This implies that the Ca2+ is bound to the hydrogen carbonate anion or that the Ca2+ content of natural water containing salts is very low, owing to precipitation. In these samples silicate-Na+ was identified as the dissolution species of silica; it was also ascertained that Ca2+ did not form complexes with silicate species. These observations resulted from direct identification of dissolved chemical species by use of FAB-MS (fast atom bombardment mass spectrometry). The research indicates that in water samples in this critically arid region the concentration of dissolved silica is basically determined by the concentration of Na+, indicative of pure inorganic conditions in the desert area of Xinjiang, N.W. China.  相似文献   

12.
Enzyme-functionalized mesoporous silica for bioanalytical applications   总被引:1,自引:0,他引:1  
The unique properties of mesoporous silica materials (MPs) have attracted substantial interest for use as enzyme-immobilization matrices. These features include high surface area, chemical, thermal, and mechanical stability, highly uniform pore distribution and tunable pore size, high adsorption capacity, and an ordered porous network for free diffusion of substrates and reaction products. Research demonstrated that enzymes encapsulated or entrapped in MPs retain their biocatalytic activity and are more stable than enzymes in solution. This review discusses recent advances in the study and use of mesoporous silica for enzyme immobilization and application in biosensor technology. Different types of MPs, their morphological and structural characteristics, and strategies used for their functionalization with enzymes are discussed. Finally, prospective and potential benefits of these materials for bioanalytical applications and biosensor technology are also presented. Figure Enzyme-functionalized mesoporous silica fibers and their integration in a biosensor design. The immobilization process takes place essentially in the silica micropores.  相似文献   

13.
以水玻璃为硅源,在pH=3以下合成MSU-X介孔材料的报道很少,本文将pH范围扩展至0.78,并从廉价的水玻璃和工业级非离子表面活性剂AEO-9出发,用二步法合成出介孔分子筛MSU-1。首先将无机前驱体和非离子表面活性剂在介稳态下(pH≈2,t≈2 ℃)混合,然后调pH至所需值(0.78~3.94),在该pH值下进行二氧化硅缩聚。合成出的MSU-1具有孔分布窄,短程有序度提高,颗粒呈微米级等特点。其中在pH=1.98下合成的MSU-1具有最薄的孔壁、最大的比表面和孔容;在pH=0.78下合成的MSU-1具有最厚的孔壁、最大的孔径和d100值。随着pH值的增大,孔壁厚度先减小后增大。  相似文献   

14.
Controlled release technologies have many applications in such diverse fields as the pharmaceutical, agricultural, cosmetic and food industries, where tailored release rates and protection of the active molecule for delivery at a specific site or time are advantageous. Silica microspheres, with controlled diameters of 10–50 m and containing Orange II dye as a model encapsulant, have been synthesised by combining water-in-oil (w/o) emulsion technology with sol–gel chemistry. The average particle size may be controlled by the microemulsion parameters, including the surfactant and solvent concentrations, and by the sol–gel processing parameters, particularly water-to-silicon alkoxide ratio, pH, temperature, ageing and mixing conditions. Physical properties of the SiO2 microspheres, which modulate the release rates of the encapsulated molecule (including pore size and tortuosity), are also controlled by the sol–gel process parameters.The effect of synthesis parameters, including surfactant concentration, sol–gel solution pH and drying temperature, on the morphology of the SiO2 microspheres produced will be discussed. The effect of such parameters on the corresponding release rates of the model encapsulants will also be presented.  相似文献   

15.
以液体石蜡为油相,间苯二酚和甲醛的水溶液为水相,吐温80和司班80为乳化剂,获得油/水(O/W)型乳状液.将该乳状液聚合、碳化去除模板后制得了碳材料,研究了不同催化剂对所得碳材料形貌的影响.结果表明:选择NaOH为催化剂时,制得的碳材料是一种具有孔壁和孔洞的多孔碳泡沫,典型样品的孔径约为1-2μm;当氨水为催化剂时,所得碳材料是由微球或者相互缠绕的蠕虫状粒子组成的块体材料,这些微球或粒子的直径主要集中在1-2μm,与NaOH为催化剂时所得碳泡沫的孔径尺寸相当.研究发现,氨水的加入使得乳液体系发生了相转化,由原来的O/W型乳液逐渐转变为W/O型高内相乳液.从分子间氢键出发,应用内聚能理论探讨了催化剂导致的乳液相变以及不同形貌碳材料的形成过程.  相似文献   

16.
应用膜乳化-液中干燥法成功制备出粒径为2~20μm的单分散聚苯乙烯(PS)微球.PS微球的粒径主要由膜孔径决定,其值约为膜孔径的2倍;PS溶液的浓度对其也有一定的影响.膜乳化过程中的压力对微球粒径的分散性有很大的影响,在一定压力范围内,粒径呈单分散.在分散相中加入致孔剂,制备出表面多孔的PS微球.采用复乳-液中干燥法制备出中空PS微球.  相似文献   

17.
Microspheres composited with mesoporous SBA-15 particles and silica were investigated as fillers in miniature loudspeakers to study the factors influencing the resonance frequency offsets(RFOs). Mesoporous silica microspheres(MSMs) were prepared by self-assembling SBA-15 mesoporous silica in a microemulsion synthesis system. The formation process involved the fabrication of a stable O/W microemulsion of tetrabutyl orthosilicate(TBOS) and hexadecyltrimethylammonium bromide(C16TAB) and encapsulation of SBA-15s. The RFO increased and then decreased with increasing particle size(in the length range of 0.7-5.5 μm and in the width range of 0.2-0.45 μm), increased with increasing pore size(in the range of 7.0-9.4 nm) of SBA-15s, and increased with decreasing particle size(105-900 μm) of MSMs.  相似文献   

18.
Several silica‐based solutions with 50 g/l of SiO2 were prepared from sodium silicate solutions and silica sol; the silicate conversion coatings were obtained by immersing hot‐dip galvanized steel sheets in these solutions. These solutions were characterized using high‐resolution transmission electron microscopy and 29Si nuclear magnetic resonance; the morphology of the coatings was observed by SEM and atomic force microscopy while the corrosion resistance was evaluated by electrochemical measurements as well as neutral salt spray tests. The results show that the coatings obtained from the single silica sol solution had poor adhesion and the coating obtained from the sodium silicate solution with low SiO2/Na2O molar ratio was uneven. By adding the silica sol to the silicate solution with low molar ratio, uniform coatings with better protection property were obtained. According to the results of 29Si nuclear magnetic resonance spectra, the effects of the distribution of silicate anions with various polymerization degrees in the silica‐based solutions on the microstructure and corrosion resistance of the silicate coatings are discussed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
以陶瓷纤维为基材的硅胶吸附材料的制备与性能   总被引:2,自引:0,他引:2  
以陶瓷纤维纸为基材,经水玻璃浸泡,絮凝剂沉积,盐酸调节pH值得到陶瓷纤维基硅胶吸附材料:探讨水玻璃浓度、絮凝剂浓度,盐酸浓度等条件对硅胶吸附剂吸附性能的影响:采用扫描电镜(SEM),多孔介质孔隙分析仪揭示吸附材料的表面形貌、比表面积及孔径大小。实验结果显示:当水玻璃浓度为26.67wt%,絮凝剂浓度为15wt%,盐酸浓度为0.5mol/L时,吸附剂具有较好的吸附性能:硅胶能较好分散在纤维表面及其空隙中,BET比表面积为347.4m^2/g,总孔容为0.20295cm^2/g,其中,微孔所占比例为50.54%,平均孔径为,微孔0.4939nm,中孔3.907nm。  相似文献   

20.
For reservoirs in high water cut exploitation period, profile control and water plugging is one of the important ways to improve oil recovery. Cores with different permeability were flooded to analyze the displacement results and displacement mechanisms for different grain size of polymer microspheres. Fluid distribution in cores was measured by NMR spectroscopy after water flooding, polymer microspheres flooding, and subsequent water flooding. The range of pore sizes from which oil was swept out was also calculated. The results showed that microspheres can effectively sweep remaining oil in different pore size of the cores. The suitability of different grain size of polymer microspheres with cores is different, microspheres with micron size are suitable for high-permeability cores, and microspheres with nanometer size are suitable for low-permeability cores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号