首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A multiresidue method for determining 22 polychlorinated biphenyls (PCBs) in air has been developed and validated by gas chromatography (GC) coupled to tandem mass spectrometry (MS/MS) using a triple quadrupole analyzer (QqQ). The method was validated in terms of both steps of sampling and analysis. The sampling method, which is based on active sampling using polyurethane foam (PUF) as adsorbent, was validated by generating standard atmospheres. The retention capacity of this sampling sorbent allows up to 5 m3 of air to be sampled without any breakthrough for most compounds. Two solvent extraction methods were compared: sonication and Soxhlet extraction with a mixture of n-hexane:diethyl ether (95:5 v/v). Both extraction methods yielded similar results, but the first one required less solvent and time. The method exhibited good accuracy (80.3–99.8%), precision (2.2–15.2%) and lower limits that allowed quantification and confirmation at levels as low as 0.008 ng/m3. Finally, the method was applied to the analysis of PCBs in the air in areas near to a municipal solid-waste landfill and directly above the refuse in the landfill, where it indicatedd the presence of some of the target compounds. Figure General chemical structure of polychlorinated biphenyls  相似文献   

2.
采用分散固相萃取(Dispersive solid-phase extraction)样品前处理方法,建立了蕨菜、黑米等生态农产品中53种农药残留的气相色谱一质谱(GC-EI/MS)的分析方法.样品由含0.1%冰醋酸的乙腈提取,以环氧七氯为内标,经分散固相萃取法净化.每种农药选择了合适的离子及其驻留时间,采用气相色谱-...  相似文献   

3.
QuEChERS original method was modified into a new version for pesticides determination in soils. The QuEChERS method is based on liquid–liquid portioning with ACN and was followed by cleanup step using dispersive SPE and disposable pipette tips. Gas chromatographic separation with MS detection was carried out for pesticides quantification. The method was validated using recovery experiments for 36 multiclass pesticides. Mean reco‐veries of pesticides at each of the four spiking levels between 10–300 μg/kg of soil ranged from 70–120% for 26 pesticides with RSD values less than 15%. The method achieved low limit of detection less than 7.6 μg/kg. Matrix effects were observed for 13 pesticides. Matrix effects were compensated by using matrix‐matched calibration. The method was applied successfully using d‐SPE or DPX in the analysis of the pesticides in soils from organic farming and integrated pest management.  相似文献   

4.
Exposure to pesticides in the environment is sensitively indicated by the concentration of these chemicals in human milk. However, to the best of our knowledge, detection methods in human milk for the relatively new class of pesticides, neonicotinoids, are yet to be validated. We developed a method of detection of neonicotinoids in human milk, together with two other classes of pesticides, pyrethroids and organochlorines. Neonicotinoids and pyrethroids are emerging pesticides that are replacing older and more persistent chemicals such as organochlorines. We optimized a procedure for extraction of these chemicals from whole milk and report our solutions to the problems of interference by co-extracted substances. The clean-up method was optimized using a minimum amount of PSA (50 mg) and MgSO4 (150 mg). This was followed by GC–MS/MS analysis (for organochlorines and pyrethroids) and LC–MS/MS (for neonicotinoids). The method was validated following SANTE/11945/2015 guidelines at concentrations 10, 20 and 100 ng g?1. Limits of quantification were obtained at ≤ 2 ng g?1 for all pesticides and lowest validated level were 10 ng g?1, with measurement uncertainty between 0.47 and 2.6 ng g?1. Average recovery ranged from 84 to 102% and for most compounds was found to be more satisfactory than the original QuEChERS, AOAC 2007.01 acetate buffer method and modified QuEChERS methods. The relative standard deviation was less than 16%. The method was successfully utilized for the analysis of human milk samples from Nadia, West Bengal and was found positive for organochlorines and negative for neonicotinoids and pyrethroids.  相似文献   

5.
Here are reported two new sampling method approaches for the determination of naphthalene in ambient air for concentrations from 0.25 to 18.7?µg/L. The first method used for gas phase naphthalene analysis produced an average recovery of 88.8% and the second method using headspace sampling produced an average recovery of 93.8%. The second method showed better recovery than the former, so it was used for subsequent comparative gas-phase determination of naphthalene. The second method was validated at various naphthalene concentrations and humidity using a naphthalene gas generator to produce various naphthalene standards and a naphthalene-monitoring instrument. The naphthalene concentrations generated using the gas generator and determined second sampling method with gas chromatography–mass spectrometry (GC–MS) were compared to the sensor measurements and were in good agreement. In summary, the sampling methods presented provided reliable gas-phase naphthalene determination when coupled with GC–MS.  相似文献   

6.
A novel design for a rapid clean‐up method was developed for the analysis of pesticide residues in fruit and vegetables followed by LC–ESI‐MS/MS. The acetonitrile‐based sample extraction technique was used to obtain the extracts, and further clean‐up was carried out by applying the streamlined procedure on a multiplug filtration clean‐up column coupled with a syringe. The sorbent used for clean‐up in this research is multiwalled carbon nanotubes, which was mixed with anhydrous magnesium sulfate to remove water from the extracts. This method was validated on 40 representative pesticides and apple, cabbage, and potato sample matrices spiked at two concentration levels of 10 and 100 μg/kg. It exhibited recoveries between 71 and 117% for most pesticides with RSDs < 15%. Matrix‐matched calibrations were performed with the coefficients of determination >0.995 for most studied pesticides between concentration levels of 10–500 μg/L. The LOQs for 40 pesticides ranged from 2 to 50 μg/kg. The developed method was successfully applied to the determination of pesticide residues in market fruit and vegetable samples.  相似文献   

7.
A method for simultaneous analysis of about 260 pesticides by gas chromatography coupled to tandem mass spectrometry (GC/MS/MS) with a triple quadrupole analyzer (QqQ) has been studied. The pesticides were extracted with acetonitrile and cleaned up by a bilayer cartridge. A single injection method was developed for the monitoring of all of the targeted pesticides. Two MS/MS transitions were selected for each analyte using the intensity ratio obtained from them as a confirmatory parameter. By using matrix-matched standards, 260 pesticides could be determined in most matrixes with recoveries of 70-120% and a standard deviation of < or = 20 at 2 different fortification levels of 0.02 and 0.1 microg/g. The developed method was applied to the monitoring of 173 agricultural product samples from the local market. The sensitivities of this method were lower than with most of the selective GC detectors, such as flame photometric or single MS. The selectivity of QqQ gives a very clean chromatogram, making compound identification and confirmation easy. The quick and reliable monitoring was achieved by combination with rapid extraction and cleanup.  相似文献   

8.
施家威  李继革  王玉飞  赵永纲 《色谱》2010,28(12):1137-1143
建立了气相色谱/三重四极杆串联质谱同时分析蔬菜中43种农药残留的方法。采用乙腈提取样品中待测组分,经固相萃取法(SPE)净化后采用气相色谱/三重四极杆串联质谱在多反应监测(MRM)模式下进行外标法定量测定。分别对青菜进行3个水平(10、80、200 μg/kg)的加标回收试验,其回收率为62.2%~170.0%,其中36种农药的回收率为70.0%~120.0%。方法的相对标准偏差(RSD)小于18%,定量限(LOQ)为0.3~4.4 μg/kg。该分析方法背景干扰低,灵敏度高,适合蔬菜中多种农药及杀虫剂残留的测定。  相似文献   

9.
A simple and sensitive method was developed and validated for the simultaneous determination of 103 pesticide residues in tea by LC‐MS/MS. For the analysis of the pesticide with polarity, thermal lability or low volatility, this LC‐MS/MS method has an advantage over GC. In this work, residual pesticides were extracted from the tea sample with ACN and then purified using Carb‐NH2 SPE cartridges. Using the multiple reaction monitoring mode, the pesticides were quantified and identified by the most abundant and characteristic fragment ions. The recoveries obtained for each pesticide ranged between 65 and 114% at three spiked concentration levels. The intra‐day precisions were lower than 19.6%. Good linear relationships were observed with the correlation coefficients r2 >0.996 for all analytes. The established method was successfully applied to the determination of pesticide residues in real tea samples.  相似文献   

10.
A new multiresidue method has been validated in cucumber matrix for the routine analysis of 130 multiclass pesticide residues by gas chromatography/triple quadrupole mass spectrometry. The pesticides were extracted with ethyl acetate. A first identification of the pesticides was based on a tandem mass spectrometric (MS/MS) screening method, which monitors a single transition for each target compound, in less than 12 min. After that, potentially non-negative samples were analyzed again by the MS/MS confirmation/quantification method, which monitors two or three MS/MS transitions for each compound, also in less than 12 min. Performance characteristics, such as trueness, precision, linear range, detection limit (LOD) and quantification limit (LOQ), for each pesticide were calculated. The average recoveries obtained ranged between 70 and 120% at three different fortification levels (25, 200 and 500 microg/kg) with precision, expressed as relative standard deviation (RSD), values lower than 15%. The calculated LOD and LOQ were typically <3.2 and 9.6 microg/kg, respectively. Such limits were much lower than the maximum residue levels (MRLs) established by European legislation. The proposed methodology was applied to the determination of pesticides in real vegetable samples from Almería (Spain).  相似文献   

11.
ABSTRACT

A fast, simple, low-cost and high-throughput multiresidue pesticide analysis method was developed and validated for 300 pesticides in herbal and fruit infusion samples based on modified QuEChERS (quick, easy, cheap, effective, rugged and safe) procedure combined with gas chromatography coupled with tandem mass spectrometry method (GC-MS/MS). The objectives were to develop low cost GC-MS/MS method, validate the method in accordance to SANTE/11,813/2017 guidance document and application in routine. The results obtained using different GC and MS/MS parameters were evaluated in order to develop quick, robust, accurate and effective multiresidue method. Total analysis time was 28 min with 0.6 µL injection volume. For accurate quantification, matrix-matched calibration (MMC) curves (in range of 10 µg/kg – 250 µg/kg) were applied to compensate matrix effect. The limits of quantification (LOQ) were ranged between 0.06 µg/kg and 135 µg/kg, and for the majority of the pesticides the LOQ were below the regulatory maximum residue limits. Most recoveries at 10 µg/kg and 100 µg/kg were in the range 70%–120% indicating satisfactory accuracy. The validated method was applied to commercial herbal and fruit infusion products detecting chlorpyriphos, DEET, tebuconazole, terbuthylazine, piperonyl butoxide, biphenyl, pendimethalin, pirimiphos-methyl and p,p’-DDE in more than 100 samples from 1,466 so risk assessment on human health was calculated specially for those pesticides.  相似文献   

12.
A method for automated detection and reporting of pesticides in plant materials based on comprehensive two-dimensional GC/time-of-flight MS with library-based detection by software has been developed and validated. Optimum settings for detection parameters such as spectral match threshold and first and second dimension retention time tolerances were assessed with respect to occurrence of false detects and false negatives. Next the method was validated following European Union guidelines established for qualitative screening of pesticides. The validation was largely done in retrospect by using data obtained for spiked samples (235 pesticides, various crops, 0.01-0.2 mg/kg) that had been analyzed previously with routine samples over a period of 18 months. At 0.01 mg/kg, the required 95% confidence level (<5% false negatives) was met for 83 compounds. This increased to 185 compounds at the 0.2 mg/kg level. For a number of pesticides, especially at low levels, it had to be concluded that at this stage the method was not fit-for-purpose to reliably demonstrate the absence of pesticides in samples to be analyzed. On the other hand, the fact that the overall detection rate at 0.01 mg/kg was 71% clearly showed that the method does provide added value for the numerous pesticides that are not covered by quantitative methods because the infrequent occurrence does not justify inclusion in such methods.  相似文献   

13.
A liquid chromatography-tandem quadrupole mass spectrometry (LC-MS/MS) multi-residue method for the simultaneous target analysis of a wide range of pesticides and metabolites in fruit, vegetables and cereals has been developed. Gradient elution has been used in conjunction with positive mode electrospray ionization tandem mass spectrometry to detect up to 171 pesticides and/or metabolites in different crop matrices using a single chromatographic run. Pesticide residues were extracted/partitioned from the samples with acetone/dichloromethane/light petroleum. The analytical performance was demonstrated by the analysis of extracts from lettuce, orange, apple, cabbage, grape and wheat flour, spiked at three concentration levels ranging from 0.01 to 0.10 mg/kg for each pesticide and/or metabolite. In general, recoveries ranging from 70 to 110%, with relative standard deviations better than 15%, were obtained. The recovery and repeatability data are in good accordance with EU guidelines for pesticide residue analysis. The limit of quantification for all targeted pesticides and metabolites tested was 0.01 mg/kg. The selectivity and robustness of the LC-MS/MS method was demonstrated by a 1-year comparison of its analytical results with those obtained from our validated GC and LC multi-residue methods applied to more than 3500 routine samples. The validated LC-MS/MS method has been implemented in our analytical scheme since 2004, replacing four of the conventional detection methods, i.e. GC-flame-photometric detection (acephate, methamidophos, etc.), GC-nitrogen-phosphorus detection, LC-UV detection (carbendazim, thiabendazole, imazalil and prochloraz) and LC-fluorescence detection (N-methylcarbamate pesticides). During a 3-year period, the LC-MS/MS method has been applied to the analyses of more than 12,000 samples.  相似文献   

14.
Li  Yonggang  Chen  Ziliang  Zhang  Rui  Luo  Ping  Zhou  Yan  Wen  Sheng  Ma  Meihu 《Chromatographia》2016,79(17):1165-1175

A quick, easy, cheap, rugged, effective, and safe (QuEChERS)-based method has been validated for the extraction of 42 pesticides and herbicides including organophosphorus pesticides (OPPs), carbamate pesticides (CBs), herbicides (HBs), organochlorine pesticides (OCPs), and synthetic pyrethroid pesticides (PYRs) from chicken eggs. The QuEChERS-based extraction procedure was followed by cleanup steps using C18 and primary secondary amine sorbents. The supernatant was analyzed by ultra-high performance liquid chromatography–tandem mass spectrometry (UHPLC–MS/MS) and gas chromatography–mass spectrometry (GC–MS). The OPPs, CBs, and HBs were quantified by UHPLC–MS/MS, while the OCPs and PYRs were detected by GC–MS. The limits of quantification ranged from 0.01 to 8.5 μg kg−1, and the analyte recoveries were in the range of 64.9–123.2 %. Furthermore, the repeatabilities (intra-day and inter-day) were good, and linear matrix-matched calibration curves were obtained. Acetochlor was identified in concentrations ranging from 0.27 to 0.44 μg kg−1 in four samples from 80 chicken eggs. The method was successfully demonstrated for the fast and reliable analysis of pesticides and herbicides in chicken egg samples.

  相似文献   

15.
An analytical method is described for assessing the vapour concentration of 11 pesticides (bioallethrin, chlorpyriphos methyl, folpet, malathion, procymidone, quintozene, chlorothalonil, fonofos, penconazole and trimethacarb) in confined atmospheres (e.g. a greenhouse after pesticide application). This study is a successful extension of a method previously developed by the authors for dichlorvos to much less volatile pesticides. Sampling was performed by using polydimethylsiloxane–solid phase micro-extraction (PDMS–SPME) fibres immersed in a 250-mL sampling flask through which air samples were dynamically pumped from the analysed atmosphere. After a 40-min sampling duration, samples were analysed by GC/MS.Calibration was performed from a vapour-saturated air sample. The linearity of the observed signal versus pesticide concentration in the vapour phase was proved from spiked liquid samples whose headspace concentrations were measured by using the proposed method. This procedure gave calibration curves with regression coefficients (R2) greater than 0.98, and the repeatability of these measurements was found with RSDs of 1.9–7.6%. As a field application test, this analysis procedure was used for the determination of gaseous procymidone concentrations as a function of time in the atmosphere of an experimental 8-m2 and 20-m3 greenhouse. The pesticide was sprayed according to real cultivation conditions, and measurements were made for 80 h after application (8 measurements). The observed concentrations found ranged from 200 to 500 µg m–3, thus indicating the level of contamination of the air breathed by people in such working conditions.Abbreviations GC/MS gas chromatography/mass spectrometry - SIM selective ion monitoring - FC43 perfluorotributylamine - RSD relative standard deviation - LOD limit of detection - LOQ limit of quantification  相似文献   

16.
An air sampling and analytical method based on adsorption on porous polymer (Tenax TA) followed by automatic thermal desorption (ATD) and GC/MS analysis was developed for ten pesticides commonly used on major crops in Britanny and some of their metabolites in air (from spray drift and volatilisation transfer processes): alachlor, atrazine (and two major degradation products: deethylatrazine and deisopropylatrazine), carbofuran, cyprodinil, epoxyconazole, iprodione (and 3,5-dichloroaniline), lindane (and -HCH, its isomer), metolachlor, terbuconazole and trifluralin. This method was established with special consideration for optimal thermal desorption conditions, linear ranges, limits of detection and quantification. Moreover, collection efficiencies of Tenax TA at room temperature were examined. This method was then applied to the determination of ambient pesticide levels during the spraying season at a rural area. The method was also applied to determine the vertical gradient of alachlor concentrations on a treated maize parcel to evaluate volatilisation fluxes.  相似文献   

17.
Caro J  Gallego M 《Talanta》2008,76(4):847-853
A sensitive and reliable method has been developed for the determination of trihalomethanes (THMs) in air samples through adsorption in sorbent tubes and thermal desorption (TD) of the compounds, followed by gas chromatography (GC)–mass spectrometry (MS) analysis. Three commercial sorbent materials were compared in terms of adsorption efficiency and breakthrough volume, finding Chromosorb 102 to be the most appropriate adsorbent for air sampling. The method allows us to reach detection limits of 0.03 ng (0.01 μg m−3 for 3 l of air), linear ranges from 0.1 to 2000 ng and specific uncertainties of ca. 5.0 ± 0.2 ng for all THMs. Several salts were tested to reduce water retention (from the humid air of an indoor swimming pool) at the sampling stage, Na2SO4 being the one that provides optimum efficiency. The method was validated by a new recovery study in which several tubes with and without adsorbent were spiked with THMs and analyzed by TD-GC/MS, recoveries ranging from 92% to 97% for all the compounds. Finally, the performance of the method was evaluated through the analysis of ambient air samples from an indoor swimming pool and alveolar air samples from swimmers to assess their THM uptake. THMs were found to be stable in the sorbent tubes for at least 1 month when stored at 4 °C.  相似文献   

18.
A multiresidue method using gas chromatography coupled to ion-trap tandem mass spectrometry (MS/MS) was developed for the analysis of 27 pesticides, commonly used in Alsace, in atmospheric samples (particle and gas phases). As pesticides are expected to be present at very low concentrations and in a complex matrix, the analytical method used was both highly selective and sensitive. These two properties were obtained by associating chromatography with ion-trap MS/MS. To develop this method, analysis of electron impact in single MS was first conducted to choose the parent ions of the pesticides studied. Among the 27 pesticides analysed, seven of them require a derivatisation step. This was the case of some ureas (chlorotoluron, diuron and isoproturon), phenoxy acids (2,4-dichlorophenoxyacetic acid, 4-chloro-2-methylphenoxyacetic acid and mecoprop) and of bromoxynil. The derivatisation was performed with success with pentafluorobenzylbromide. Then, a MS/MS method was optimised by parameters such as the radio frequency storage level and the collision-induced dissociation excitation voltage. Finally, a last step enabled the development of two calibrating programs based on the quantification of daughter ions for the 20 pesticides analysed directly (run 1) and for the seven pesticides which needed derivatisation (run 2). With this analytical procedure, the detection limits varied between 2.5 and 1,250 pg m–3 depending on the compounds studied. This method was tested with success for atmospheric samples collected in Strasbourg (France) during intensive pesticide treatment in 2002.  相似文献   

19.
In this paper, a multiresidue method for the simultaneous target analysis of 74 pesticides and metabolites in traditional Chinese herbal medicines (TCHMs) was developed using accelerated solvent extraction (ASE) coupled with HPLC/MS/MS. Pesticide residues were extracted from the different samples using ASE, then purified by gel permeation chromatography and graphitized carbon black/primary, secondary amine SPE. Gradient elution was used in conjunction with positive mode electrospray ionization MS/MS to detect 74 pesticides and metabolites from Cortex Cinnamomi, Flos Carthami, Folium Ginkgo, Herba Pogostemonis, Radix Ginseng, and Semen Ginkgo using a single chromatographic run. The analytical performance was demonstrated by the analysis of extracts spiked at three concentration levels ranging from 0.005 to 0.125 mg/kg for each pesticide and metabolite. In general, recoveries ranging from 70 to 110%, with RSDs better than 15%, were obtained. The recovery and repeatability data were in good accordance with European Union guidelines for pesticide residue analysis. The LOD for most of the targeted pesticides and metabolites tested was below 0.01 mg/kg.  相似文献   

20.
The HAPSITE® (Hazardous Air Pollutants on Site) is a portable gas chromatography-mass spectrometry (GC–MS) unit designed to aid air sampling technicians by identifying and quantifying volatile organic compounds from occupational and environmental sampling. The main goal of the present study was to extend prior laboratory-based work with the portable HAPSITE® ER (extended range model) thermal desorption (TD) capability to real-world field samples from both indoor and outdoor environments using different types of active and passive sampling mechanisms. Understanding the performance of the HAPSITE® ER in a realistic field setting will allow air quality sampling technicians to make improved decisions related to sampling and analysis methods in the field. An important finding was that certain charcoal-based TD sorbents were contraindicated for the HAPSITE® ER because of a substantial hydrocarbon bleed which degraded system performance. A novel time series TD sampler (Logistically Enabled Sampling System-Portable [LESS-P]) was validated using Tenax TA TD tubes against standard active sampling across multiple field sampling sites, and the qualitative analytical trends and compound identities were similar between LESS-P replicates analysed via benchtop GC–MS and HAPSITE® ER. Once validated, the LESS-P was used to determine the reference concentrations for passive sampling calculations. The results confirmed the passive sampling methodology within the benchtop system, but highlighted some systemic sensitivity limitations that must be addressed in order for the HAPSITE® to be accurately applied to passive sampling. We propose that the LESS-P time-series sampler may help to alleviate the requirement for sampling technicians to be on-site during active sampling, allowing for automated sampling throughout the duration of a sampling event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号