首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The elastic moduli and volume of H2O-D2O (1: 1) isotopically mixed ice (solid solution) have been studied at the solid-phase amorphization of normal 1h ice under compression at a temperature of 77 K and at the transition from high-density amorphous ice to low-density amorphous ice with subsequent successive crystallization to cubic (1c) and hexagonal (1h) ice at isobaric (0.05 GPa) heating. Comparison of the results with the respective data for H2O and D2O ices indicates that the observed concentration (in the isotopic composition) dependences of the elastic moduli and their derivatives for different phases of ice at isotopic hydrogen substitution in the H2O, H2O-D2O (1: 1), and D2O chain can be both monotonic and significantly nonmonotonic.  相似文献   

2.
Rotational resonances of ortho and para spin isomers of the H2O molecule are observed in hexagonal ice using four-photon spectroscopy of coherent light scattering. It is experimentally shown that the resonant contribution to the four-photon scattering signal from para H2O spin isomers in ice is about half as large as that in the liquid phase.  相似文献   

3.
A hypothesis of the quantum nature of the specific temperatures T s of water and ice, whose values is not random, was formulated. It was found that the quantum energy hΩ mn of closely located rotational transitions in the ortho and para spin isomers of H2O molecules coincides with the translation energy kT near the well-known specific temperatures T s in ice and water. On the basis of this fact it was suggested that ortho-para conversion occurs at temperatures close to T s upon inelastic collisions and resonance energy exchange kT shΩ mn in the rotation-translation-rotation (RTR) processes. Such conversion can induce rearrangement of the H-bond set structure and repacking of H2O molecules. The coincidence kT shΩ mn was checked for ice and water at 12 known T s, as well as for heavy water D2O near T s = 11.2°C (maximum density) and −140°C (glassy transition). The previously observe strong deformation of the OH Raman band near T s = 4, 19, 36, and 76°C (maximum density, maximum surface tension, minimum heat capacity, and maximum speed of sound, respectively) was interpreted as a manifestation of the water structure rearrangement induced by H2O ortho-para conversion.  相似文献   

4.
Nuclear magnetic resonance of oriented54Mn nuclei in antiferromagnetic MnCl2 · 4H2O has been observed. The first two lines of the sextuplet split by quadrupole interaction are at frequencies 500.4 and 514.7 MHz, implying a hyperfine field of 643(5) kG. The stronger line at 500.4 MHz has a half-width at half maximum of 60 kHz and is shifted downward and split in frequency on application of a magnetic field. The nuclear spin-lattice relaxation time is dependent both on the applied field and the size and/or quality of the crystal.  相似文献   

5.
The hyperfine interaction in Ni2HfF8·12H2O has been determined between 77 K and 1100 K by means of the time-differential perturbed angular correlation technique. From 200 K on, the one-site phase existing at lower temperatures undergoes a gradual phase transition until, at room temperature, the populations of both phases attain a 2:1 ratio. While the quadrupole frequencies characterizing them exhibit aT 3/2 thermal dependence, their population ratio seems to obey a Boltzmann distribution. At 350 K, when the η-value of the high temperature phase electric field gradient approaches its maximum value, the starting compound decomposes to NiHfF6·6H2O. A kinetics study of the Ni2HfF8·12H2O recovery at room temperature seems to indicate that a tri-dimensional diffusion mechanism is responsible for the corresponding reaction process. The first decomposition product of NiHfF6·6H2O left to atmospheric pressure is found to be NiHfF6·4H2O at 368 K and, between 414 K and 590 K, the high temperature cubic phase of NiHfF6 and Hf2OF6 can be simultaneously observed. Finally, monoclinic HfO2 appears from 1020 K on, having been preceded by an interaction which can be though of as depicting a preliminary stage in hafnia formation.  相似文献   

6.
The paper deals with a study of the proton nuclear magnetic resonance (NMR) of crystallization water in isomorphous monohydrates MgSO4. 1 H2O and FeSO4. 1 H2O in the temperature range 123–313 K. The NMR second moment for diamagnetic MgSO4. 1 H2O shows only a weak dependence on temperature but the one for paramagnetic FeSO4. 1 H2O is rather strong. Results obtained for FeSO4. 1 H2O are in a good agreement with the Kroon's theory of NMR in paramagnetics. The Curie-Weiss constant and the effective magnetic moment of Fe2+ ions in FeSO4. 1 H2O are derived from the temperature dependence of NMR second moment. The motion of molecules of crystallization water in these hydrates is discussed on the basis of temperature dependences of the width and second moment of NMR spectra.  相似文献   

7.
D2O ice Ih doped with KOD was found by calorimetry to undergo a phase transition at 76 K. The enthalpy and entropy of the phase transition depended in their magnitude on the annealing of the sample. The largest values obtained were ΔH = 155 J mol−1 and δS = 2.06 J K−1 mol−1. The phase transition removed 64% of the residual entropy. Mechanisms of the isotope effect were discussed to explain the difference in the transition temperatures of the D2O and H2O ices and compared with the experiment. The pressure coefficient of the transition temperature was calculated by the use of the Clapeyron-Clausius equation and recent data on the molar volume of the new phase. The name ice XI is proposed to designate the ordered phase of ice Ih.  相似文献   

8.
A Das  S N Changdar 《Pramana》1992,39(4):317-321
Sliding cell method, developed in our laboratory, has been used to measure the inter diffusion coefficient of thallium ion in thallous sulphate solution over a wide concentration range using both water and heavy water as solvent at 35°C. The results have been analysed from the point of view of both ion-ion and ion-solvent interactions. The comparison of the diffusivities of the same ion in D2O and H2O electrolyte solutions at the same temperature indicate that the addition of salt affects the two solvents differently.  相似文献   

9.
By means of Level Crossing Resonance in a sample of ice which is enriched in H2 17O, the final diamagnetic state of implanted positive muons is determined to be the muonium-substituted molecule HMuO, accommodated in the regular and fully relaxed Ih structure. The17O quadrupole coupling constant is measured to be 6.1 MHz at 200 K assuming an asymmetry parameter close to unity, a decrease of about 5% relative to that in normal ice Ih at 77 K. The isotope effect is attributed to a greater polarization in the vicinity of a muonium (as opposed to a normal hydrogen) bond. At 50 K, an additional resonance is observed which could correspond to a precursor state, so far not definitely identified. One possibility is a muon trapped at a Bjerrum L-defect, giving a {H2O−Mu−OH2}+ species with an,17O quadrupole coupling constant of 8.2 MHz and asymmetry parameter of 0.55. Above this temperature, the fall in the (Gaussian) line-width parameter is attributed to the increasing rate of proton or muon migration, the correlation time dropping from 4 μs at 80 K to 1 μs near the melting-point. The increase in the diamagnetic fraction with rise in temperature is attributed to the increasing proportion of trapping sites available for muon capture.  相似文献   

10.
2D NMR studies in single crystals of CoSiF6.6D2O, CoTiF6.6D2O and ZnTiF6.6D2O reveal that all of them transform from rhombohedral to monoclinic symmetry through an intermediate phase as the temperature is lowered from 300 to 100K. The results throw light on the hydrogen bond network in different phases.  相似文献   

11.
[Ba(H2O)3](ClO4)2 between 90 and 300 K possesses two solid phases. One phase transition of the first‐order type at: = 211.3 K (on heating) and = 204.6 K (on cooling) was determined by differential scanning calorimetry. The entropy change value (ΔS ≈ 15 Jmol–1 K–1), associated with the observed phase transition, indicates a moderate degree of molecular dynamical disorder. Both, vibrational and reorientational motions of H2O ligands and ClO4 anions, in the high‐temperature and low‐temperature phases, were investigated by Fourier transform far‐infrared and middle‐infrared and Raman light scattering spectroscopies. The temperature dependences of the full‐width at half‐maximum values of the bands associated with ρw(H2O) mode, in both infrared (~570 cm–1) and Raman light scattering (~535 cm–1) spectra, suggest that the observed phase transition is not associated with a sudden change of a speed of the H2O reorientational motions. Ligands reorient fast, with correlation time of the order of several picoseconds, with a mean activation energy value Ea = 5.1 kJ mol–1 in both high and low temperature phases. On the other hand, measurements of temperature dependences of full‐width at half‐maximum values of the infrared band at ~460 cm–1, associated with δd(OClO)E mode, and Raman band at ~1105 cm–1, associated with νas(ClO)F2 mode, revealed the existence of a fast ClO4 reorientation in phase I and in phase II, with the Ea(I) and Ea(II) values equal to 8.0 and 6.5 kJ mol–1, respectively. These reorientational motions of ClO4 are slightly distorted at the TC. Fourier transform far‐infrared and middle‐infrared spectra with decreasing of temperature indicated characteristic changes at the vicinity of PT at TC, which suggested lowering of the crystal structure symmetry. All these experimental facts suggest that the discovered phase transition is associated with small change of H2O ligands and somewhat major change of ClO4 anions reorientational dynamics, and with insignificant change of the crystal structure, too. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
The interaction of O2 and N2O are compared on the basal plane of Ru as a function of the coverage of copper. Dissociative N2O uptake (N2O(g) → O(a) + N2(g)) on clean Ru was measured using AES and transient partial pressures. The initial dissociative reaction probability is a steadily declining function of temperature while the saturation uptake of oxygen remains constant from 300–900 K. The saturation oxygen AES signal for N2O chemisorption was one half that observed for O2 chemisorption. The presence of 0.02 monolayers of Cu retards the initial dissociative adsorption of N2O by 40% but has little effect on the total uptake of oxygen. The initial dissociative sticking coefficient for O2 is not retarded significantly by small amounts of copper. Deposition of larger amounts of Cu leads to the completion of a 2D overlayer before growth in 3D begins. Surfaces covered with less than 3 monolayers of Cu exhibit larger O2 sticking coefficients and greater oxygen stability than pure Cu.  相似文献   

13.
The enhancement of the cross section for Raman scattering has been measured near resonance with the 1S yellow exciton in Cu2O (v1SY ? 16,399 cm-1). The shape of the enhancement is shown to be Lorentzian to beyond 10 halfwidths from the peak. From the temperature dependence of the width of the enhancement profile, we extract separately the rates for exciton- acoustic phonon scattering, γsc(T), and for non-radiative decay, γnr, of this exciton state. We find γnr = 2.4 × 1010sec-1 and γsc(T=5.4K) = 0.85 × 1010sec-1.  相似文献   

14.
N2-broadened halfwidths have been measured for 51 absorption lines belonging to the ν3 fundamental band of hydrogen cyanide (1H12C14N) near 3311 cm?1. The data were recorded at room temperature using a Fourier transform spectrometer with a nominal resolution of 0.06 cm?1. A nonlinear least-squares spectral-fitting procedure was used to obtain both line intensities and collision-broadened halfwidths from scans recorded at several different pressures. The N2-broadened halfwidths, determined for all lines with J ≤ 25 in both the P and R branches of the band, show the expected distribution with J for broadening by a nonpolar gas. The halfwidth values range from approximately 0.17 cm?1 atm?1 near the band center to 0.11 cm?1 atm?1 for high-J lines. The band intensity for the ν3 fundamental derived from these measurements is 236.2 ± 9.5 cm?2 atm?1 at 296 K, and empirical coefficients for the vibration-rotation interaction F-factor were also determined.  相似文献   

15.
The growth of LiNbO3 single crystals from a melt with the Li/Nb ratio of 0.946, to which 6 wt.% K2O has been added, leads to stoichiometric specimens, essentially free of potassium, with (50±0.15) mol% Li2O in the crystal. This is established by studying the composition dependence of the following properties: linewidths of the electron paramagnetic resonance (EPR) of Fe3+, energy of the fundamental absorption edge, Raman linewidths of phonon modes, and dispersion of the optical birefringence. Comparison of the results with relevant calibration scales leads to the above composition. In all cases the Li2O content was found to be closer to 50% than that of a LiNbO3 crystal vapor-phase equilibrated to 49.9mol% Li2O. The photorefractive effect at light intensities I107 W/m2 is suppressed in this stoichiometric material. The features of the ternary system K2O-Li2O-Nb2O5, which are possibly responsible for the unexpected growth of stoichiometric LiNbO3 from the indicated melts, are discussed.  相似文献   

16.
The properties of solid and liquid phases of H2O at high pressure and temperature remain an active area of research. In this study, Brillouin spectroscopy has been used to determine the temperature dependence of sound velocities in H2O as a function of pressure up to 26 GPa through the phase field of ice VII and into the liquid to a maximum temperature of 1200 K. The Brillouin shift of the quasi-longitudinal acoustic mode moves to lower frequencies upon melting at each pressure. As a test of the method, measurements of the melting of Ar by Brillouin scattering at several pressures show a similar behavior for the acoustic mode, and measured melting points are consistent with previous results. The results of H2O melting are consistent with previously reported melting curves below 20 GPa. The data at higher pressure indicate that ice melts at a higher temperature than a number of previous studies have indicated.  相似文献   

17.
A dielectric response of the Pb(Mg1/3Nb2/3)O3 ferroelectric ceramics with impurity of 2 wt % Li has been studied. The phase transition has been found to exhibit a relaxor character, as is the case in PMN without Li. However, unlike pure PMN, the dielectric response dispersion in PMN + 2 wt % Li2O has been described by the Cole-Cole equation at temperatures below the temperature of the low-frequency maximum of the permittivity. An analysis of the dispersion parameters in a wide temperature range has demonstrated that it can be due to the relaxation of domain walls in PMN + 2 wt % Li2O that appear most likely because of the existence of anomalously coarse grains in PMN + 2 wt % Li2O.  相似文献   

18.
High pressure experiments were performed on D2O ice VII using a diamond anvil cell in a pressure range of 2.0–60 GPa at room temperature. In situ X-ray diffractometry revealed that the structure changed from cubic to a low symmetry phase at approximately 11 GPa, based on the observed splitting of the cubic structure's diffraction lines. Heating treatments were added for the samples to reduce the effect of non-hydrostatic stress. After heating, splitting diffraction lines became sharp and the splitting was clearly retained. Although symmetry and structure of the transformed phase have not been determined, change in volumes vs. pressure was calculated, assuming that the low-symmetry phase had a tetragonal structure. The bulk modulus calculated for the low-symmetry phase was slightly larger than that for the cubic structure. In Raman spectroscopy, the squared vibrational frequencies of ν1 (A1g), as a function of pressure, showed a clear change in the slope at 11–13 GPa. The full width at half maxima of the O-D modes decreased with increasing pressure, reaching a minimum at approximately 11 GPa, and increased again above 11 GPa. These results evidently support the existence of phase change at approximately 11 GPa for D2O ice VII.  相似文献   

19.
A specific-wavelength infrared (IR) light (λ=3140 nm) was irradiated into a solid D2 ice prepared in a cylinder target cell. The temperature in the solid D2 ice oscillated periodically with a high amplitude when irradiated by the IR light. The temperature oscillation has been well explained based on the two-dimensional heat transfer theory plus the IR-irradiation effect. The transmission optical imaging reveals that such a temperature oscillation is favorable to recrystallize the solid D2 ice from multicrystal to quasi single crystal. This suggests an efficient method to layer the solid hydrogen-isotope ice for the inertial-confinement-fusion (ICF) experiments.  相似文献   

20.
《Infrared physics》1993,34(4):339-344
In this paper we report the generation of ultrashort far-infrared laser pulses with durations less than 100 ps, powers exceeding 200 kW and intensities of more than 1.5 MW/cm2. Far-infrared radiation was produced via stimulated resonance Raman scattering using a high-pressure CO2-laser as pump source and the heavy water isotopes D216O and D218O as far-infrared laser media. Pulses achieved from this laser system were detected by a novel type of detector, sensitive over a broad spectral range from the far-infrared to the visible, basing on quasiparticle heating in a strip-line structured YBa2Cu3O7−δ thin film.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号