首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Coupled TG-FTIR technique was used for identification of gaseous compounds evolved at thermal treatment of six coal samples from different deposits (Bulgaria, Russia, Ukraine). The experiments were carried out under dynamic heating conditions up to 900°C at heating rates of 5, 10 or 50 K min–1 in a stream of dry air. The emission of CO2, H2O, CO, SO2, COS, methane, methanol, formic acid, formaldehyde, acetaldehyde, chlorobenzene was clearly identified in FTIR spectra of the samples studied. The formation of ethanol, ethane, ethylene and p-xylene, at least on the level of traces, was also identified. At the heating rate of 5°C min–1 the temperature of maximum intensities of the characteristic peaks of COS was 270°C, of formaldehyde, formic acid, ethane and methanol 330°C, of SO2, CO, acetic acid, ethylene and p-xylene 400°C and of chlorobenzene 500°C. At 10°C min–1 and 50°C min–1 these temperatures were shifted, respectively, by 70–300°C and 150–450°C towards higher temperatures and the respective absorption bands in FTIR spectra were, as a rule, more intensive.  相似文献   

2.
Influence of the presence of CO2, which is a mild oxidant, on the performance of the thermal cracking of ethane to ethylene in the absence or presence of limited O2 at different temperatures (750–900‡C), space velocities (1500–9000 h-1) and CO2/C2H6 and O2/C2H6 mole ratios (0–2.0 and 0–0.3 respectively) has been investigated. In both the presence and absence of limited O2, ethane conversion increases markedly because of the presence of CO2, indicating its beneficial effect on the ethane to ethylene cracking. The increased ethane conversion is, however, not due to the oxidation of ethane to ethylene by CO2; the formation of carbon monoxide in the presence of CO2 is found to be very small. It is most probably due to the activation of ethane in the presence of CO2.  相似文献   

3.
The diffusion-limited adsorption of individual ethane or of ethane from mixtures with hydrogen by thin pellets of NaA, CaA and LiLSX zeolites or by thick layers of granulated zeolites was studied at room temperature. The rates of adsorption were monitored by development of the bands from the symmetry forbidden C–H stretching vibrations that were not observed for gaseous molecules. Diffusivity of individual ethane in the micropores of the thin NaA pellet obtained by this method is equal to 6 ⋅ 10−16 m2/s. This value agrees well with that one previously reported in literature. For adsorption of pure ethane in the larger primary micro pores of CaA or LiLSX only the lower limits of diffusivities were estimated. Diffusion-limited adsorption of ethane from mixtures with hydrogen by the thicker layers of granulated zeolites is much slower and is limited by counterdiffusion inside much larger channels between the zeolite granules. Estimation of diffusion coefficients of such counterdiffusion indicated that they are by two orders of magnitude lower than those for diffusion in gaseous mixtures of similar composition. This paper is dedicated to the memory of Professor Wolfgang Schirmer.  相似文献   

4.
Endohedral adsorption properties of ethylene and ethane onto single-walled carbon nanotubes were investigated using a united atom (2CLJQ) and a fully atomistic (AA-OPLS) force fields, by Grand Canonical Monte Carlo and Molecular Dynamics techniques. Pure fluids were studied at room temperature, T=300 K, and in the pressure ranges 4×10−4<p<47.1 bar (C2H4) and 4×10−4<p<37.9 bar (C2H6). In the low pressure region, isotherms differ quantitatively depending on the intermolecular potential used, but show the same qualitative features. Both potentials predict that ethane is preferentially adsorbed at low pressures, and the opposite behavior was observed at high loadings. Isosteric heats of adsorption and estimates of low pressure Henry’s constants, confirmed that ethane adsorption is the thermodynamically favored process at low pressures. Binary mixtures of C2H4/C2H6 were studied under several (p,T) conditions and the corresponding selectivities towards ethane, S, were evaluated. Small values of S<4 were found in all cases studied. Nanotube geometry plays a minor role on the adsorption properties, which seem to be driven at lower pressures primarily by the larger affinity of the alkane towards the carbon surface and at higher pressures by molecular volume and packing effects. The fact that the selectivity towards ethane is similar to that found earlier on carbon slit pores and larger diameter nanotubes points to the fact that the peculiar 1-D geometry of the nanotubes provides no particular incentive for the adsorption of either species.  相似文献   

5.
We report the use of nanospheres prepared by coating silica with molecularly imprinted polymer (MIP) for sulfamethoxazole (SMO). The resulting SiO2–SMO–MIP nanoparticles have highly improved imprinting and adsorption capacity, and can be used for separation and determination of sulfonamides in eggs and milk. In the synthesis, monodispersed SiO2 nanoparticles (Si–NP) of diameter 80 nm were amino-modified by reaction with 3-aminopropyltriethoxylsilane. The acryloyl monolayer was then grafted onto the amine-modified Si–NP. Finally, the MIP films were coated on to the surface of Si–NP by the copolymerization of the vinyl end groups with functional monomer (acrylamide), cross-linking agent (ethylene glycol dimethacrylate), initiator (azo-bis-isobutyronitrile), and template molecule (sulfamethoxazole). The resulting SiO2–SMO–MIP–NP were characterized by transmission electron microscopy, scanning electron microscopy, and Fourier transform infrared spectrometry. The adsorption properties were demonstrated by equilibrium rebinding experiments and Scatchard analysis. The results showed that the binding sites of the SiO2–SMO–MIP were highly accessible, and the maximum adsorption capacity of the SiO2–SMO–MIP for SMO was 20.21 mg g−1. The selectivity of the SiO2–SMO–MIP–NP obtained was elucidated by using SMO and structurally related sulfonamides. The results indicated that the SiO2–SMO–MIP had significant selectivity for SMO. The feasibility of removing SMO and sulfadiazine (SDZ) from food samples was proved by use of spiked milk and eggs. A method for the separation and determination of trace SMO and SDZ in milk and egg samples was developed, with recoveries ranging from 69.8% to 89.1%.  相似文献   

6.

Abstract  

Organo-modified mesoporous silica SBA-15 has been studied for sorption of carbon dioxide (CO2). The SBA-15 sample was functionalized with a branched chain polymer, polyethylenimine (PEI), of different molecular weights (1,300 and 2,000 g mol−1). Surface modification was carried out by impregnation of silica by PEI or by grafting with (3-chloropropyl)triethoxysilane, followed by substitution of chlorine atoms by PEI ligands. The prepared modified mesoporous materials were characterized by nitrogen adsorption/desorption at 77 K, high-resolution transmission electron microscopy, small-angle X-ray scattering, and thermal methods. Sorption of CO2 was studied by gravimetric method at 303 K. The total amount of sorbed CO2 varied between 0.19–0.67 mmol/g for respective samples. Regeneration of the materials after adsorption was achieved by thermal treatment at 343 K.  相似文献   

7.
Adsorption of ethane, butane, hexane, and benzene on a reduced alumina-chromia catalyst was investigated at 20–460 °C. The temperature ranges of physical adsorption and chemisorption were determined. The rate of hydrogen evolution is directly proportional to the rate of chemisorption of hydrocarbons. It was suggested that chemisorption of hydrocarbons results in the formation of intermediates in which Cr2+ ions and carbon atoms are linked by σ-bonds. Published inIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1375–1378, August, 2000.  相似文献   

8.
For Zn2+ cations in ZnZSM-5 zeolite unusual type of cationic positions, formed by two distantly placed framework aluminium atoms, is considered. Some extent of structural destabilization of cations in these cationic positions in comparison with traditional localization should result in promoted Lewis activity and adsorption activity of these sites. The last ones are manifested in the significantly increased IR low frequency shifts for adsorbed molecules and in their ability for heterolytic dissociation at elevating temperature. DFT cluster quantum chemical modeling of light alkane adsorption on Zn2+ in ZnZSM-5 zeolites confirms these conjectures in full agreement with recent experiments. Similar to the previously considered dihydrogen and methane molecule adsorption, we present here the calculations of ethane molecular and dissociative adsorption on these sites. It is shown that the unusually large ethane IR frequency shift recently observed in ZnZSM-5 zeolite can result from adsorptive interaction of C2H6 with Zn2+ stabilized in a cationic position with distantly placed aluminium ions. The dissociative adsorption of ethane molecules with the formation of bridged hydroxyl group and Zn–C2H5 structure is considered and an activation energy of ethylene formation from the alkyl fragment is evaluated.  相似文献   

9.
Hybrid organic–inorganic materials, silica–diol, were synthesized by the sol–gel process from mixtures of tetraethylorthosilicate (TEOS) and diols: ethylene glycol (HO–CH2–CH2–OH) and 1,3 propane diol (HO–CH2–CH2–CH2–OH), in acid catalysis. The gels have been synthesized for a molar ratio H2O:TEOS = 4:1 and different molar ratios diol/TEOS: 0.25; 0.5; 0.75; 1.0; 1.25 and 1.5. The resulting gels were studied by thermal analysis and FT-IR spectroscopy, in order to evidence the interaction of diols with silica matrix. Thermal analysis indicated that the condensation degree increases with the molar ratio diol/TEOS until a certain value. The thermal decomposition of the organic chains bonded within the silica network in the temperature range 250–320 °C, leaded to a silica matrix with modified morphology. The adsorption–desorption isotherms type is different for the samples with and without diol. Thus, the specific surface areas have values <11 m2/g for the samples without diol and >200 m2/g for the samples with diols, depending on the annealing temperature.  相似文献   

10.
CO adsorption on polycrystalline nickel was investigated by dynamic secondary ion mass-spectroscopy at 10−5–10−3 Pa and 300–500 K. An increase of secondary ion currents NiCO+/Ni+ ratio was found in the range from 300 to 350 K, while at T>350 K it decreased sharply. These data were explained by a kinetic model, in which adsorption and desorption of tightly bound CO goes through weakly bound CO formed due to ion-induced defects.  相似文献   

11.
In this paper we investigate the mixture adsorption of ethylene, ethane, nitrogen and argon on graphitized thermal carbon black and in slit pores by means of the Grand Canonical Monte Carlo simulations. Pure component adsorption isotherms on graphitized thermal carbon black are first characterized with the GCMC method, and then mixture simulations are carried out over a wide range of pore width, temperature, pressure and composition to investigate the cooperative and competitive adsorption of all species in the mixture. Results of mixture simulations are compared with the experimental data of ethylene and ethane (Friederich and Mullins, 1972) on Sterling FTG-D5 (homogeneous carbon black having a BET surface area of 13 m2/g) at 298 K and a pressure range of 1.3–93 kPa. Because of the co-operative effect, the Henry constant determined by the traditional chromatography method is always greater than that obtained from the volumetric method.  相似文献   

12.
The purpose of this study was to determine the possibility of producing hydrophobic mesoporous mineral–carbon sorbents from aluminum hydroxide and compositions of coal tar pitch–polymers on carbonization at 600 °C in a nitrogen atmosphere. Blends of the products of co-precipitation of aluminum hydroxide in the carbonaceous substances medium were subjected to carbonization process. The extent of porous structure development was evaluated using low temperature nitrogen adsorption, adsorption of benzene vapors, and adsorption of iodine from aqueous solution. The highest value of BET surface area of about 370 m2/g was achieved for the carbonization product obtained from co-precipitated raw components with 10 wt% compositions coal tar pitch–polymer. These materials demonstrated high capacity to reduce organic pollutions from sewage. Pitch–polymer composition containing poly(ethylene terephthalate) or phenol–formaldehyde resin was studied by the means of DSC method in order to determine the high-temperature transformations taking place under the conditions of carbonization. DSC method enables to determine i.a. the decomposition temperatures of carbonizates produced from pitch–polymer compositions and the evaluation of their sorption abilities. The additive of poly(ethylene terephthalate) and phenol–formaldehyde resin caused the increase of thermal resistance of the pitch expressed by higher decomposition temperatures.  相似文献   

13.
The temperature dependence of the heat capacity of the alternating copolymer (ACP) of carbon monoxide with ethylene was studied, and temperatures and enthalpies of its phase transformations were measured by adiabatic vacuum, dynamic, and isothermal calorimetry in the temperature range from 8 to 600 K. The energy of burning of ACP was measured at 298.15 K in a calorimeter with the static bomb and isothermal shell. The thermodynamic parameters of transformation of the α-form of ACP crystals into the β-form and fusion of the β-form were determined. The thermodynamic functions for the 0–507 K range and thermodynamic characteristics atT=298.15 K andp=101.325 kPa were calculated. The thermodynamic parameters of the alternating copolymerization of ethylene and CO at 0–507 K and standard pressure were calculated for the bulk reaction. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 284–288, February, 1998.  相似文献   

14.
Resorcinol and formaldehyde were used as carbon precursors, poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer was employed as a soft template, and tetraethylorthosilicate-generated silica was used as hard templates to synthesize spherical mesoporous carbon. The resulting spherical mesoporous carbons were characterized by nitrogen adsorption–desorption isotherms and electron microscopy (SEM and TEM) and used as electrode materials for aqueous electric double-layer capacitors. The average diameters of spherical particles ranged from 2 to 7 μm and the mesopore was ca 2 nm. The highest specific surface area of 1,000 m2/g and mesopore volume of 0.86 cm3/g was obtained. The specific capacitance of 130 F/g was obtained by means of galvanostatic charging/discharging and cycle voltammetry.  相似文献   

15.
A new variant of the kinetic distributive method was used to study the kinetics of the oxidation of ethylene by PdCl2 complexes supported on silica gel taking account of the equilibrium distribution of ethylene between the gas phase, silica gel, and metal complex reaction sites. Mono-, bi-, and polynuclear palladium(II) species are found to participate in the reaction. The PdII activity increases with increasing amount of nuclei in the species. L. M. Litvinenko Institute of Physical Organic and Coal Chemistry, National Academy of Sciences of Ukraine, 70 R. Lyuksemburg ul., Donetsk 83114, Ukraine. Translated from Teoreticheskaya i éksperimental'naya Khimiya, Vol. 36, No. 4, pp. 243–246, July–August, 2000.  相似文献   

16.
The surface acidic properties of sulfated vanadia–titania catalysts prepared by various methods were investigated by adsorption microcalorimetry, using ammonia as probe molecule. The acidic characteristics of the samples were shown to be strongly affected by the preparation method, calcination temperature, and sulfur content. The samples prepared by sol–gel and mechanical grinding exhibited higher acidity than co-precipitated samples. Moreover, increasing the calcination temperature of co-precipitated samples resulted in a decrease in surface area from 402 to 57 m2 g−1 and sulfur content from around 4 to 0.2 mass%, but up to a certain point generated a stronger acidity. The optimal calcination temperature appeared to be around 673 K.  相似文献   

17.
Adsorption of CO2 was investigated over a wide range of conditions on a series of mesoporous silica adsorbents comprised of conventional MCM-41, pore-expanded MCM-41 silica (PE-MCM-41) and triamine surface-modified PE-MCM-41 (TRI-PE-MCM-41). The isosteric heat of adsorption, calculated from adsorption isotherms at different temperatures (298–328 K), showed a significant increase in CO2–adsorbent interaction after amine functionnalization of PE-MCM-41, consistent with the high CO2 uptake in the very low range of CO2 concentration. The CO2 adsorption isotherm and kinetics data showed the high potential of TRI-PE-MCM-41 material for CO2 removal in gas purification and separation applications. With TRI-PE-MCM-41, the CO2 selectivity over N2 was drastically improved over a wide range of conditions compared to pure mesoporous silica. Moreover, the adsorption was reversible and fast, and the adsorbent was thermally stable and tolerant to moisture.  相似文献   

18.
The kinetics of ethylene oxidation by PdCl2 and CrO3 complexes supported on silica gel (300 K, closed batch reactor) and the adsorption of C2H4 by silica gel and metal complex reaction centers (M n ) were studied. A new version of the kinetic distribution method was applied to determine the rate constants of ethylene reactions with metal complexes with consideration for the equilibrium distribution of C2H4 among the reactor gas phase, silica gel, and M n . The rate constant of a first-order reaction with respect to Cr(VI) (k e) remained constant as [M n ] was increased up to 0.15 mol % with the absence of detectable ethylene adsorption by chromium(VI). In the case of Pd(II)/SiO2, strong ethylene adsorption by palladium(II) was found, and k e was an exponential function of [M n ]. This exponential function is indicative of an increase in the specific activity of Pd(II) with palladium concentration on SiO2. Taking into account the adsorption of ethylene (physisorption on SiO2 and chemisorption on Pd(II)), we found an analogy between the kinetic behaviors of Pd(II) in reactions with ethylene on silica gel and with ethylene and other hydrocarbons in solutions.  相似文献   

19.
Summary. A new type of silica precursor was synthesized by (trans)alkoxylation of alkoxy- and chlorosilanes with ethyl (L)-lactate. This novel ethyl lactate modified silane was hydrolyzed and condensed in the presence of a non-ionic surfactant – poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) triblock copolymer (P123) – to give monolithic silica gels. The wet gels were dried using two different drying techniques resulting in crack-free monoliths: a) supercritical drying with CO2 to yield a porous inorganic material and b) surface silylation with trimethylchlorosilane to yield an inorganic–organic nanocomposite material. The obtained porous gels were characterized by different techniques including thermal analysis, nitrogen sorption, and electron microscopy (TEM, SEM).  相似文献   

20.
The high resolution adsorption isotherms of N2 (77.4 K) and Ar (87.3 K) have been measured for two nonporous silicas with different silanol contents (3.3 and 0.35 OH/nm2) and for two MFI zeolite with different Al contents (Si/Al=12.5 and 500). Silanol groups and Al sites (acid sites) gives the significant effect on the N2 isotherms at submonolayer, but the Ar isotherms are independent of silanols and Al sites. The Ar isotherms, therefore, are preferable in calculation of microporosity of zeolites. The N2 and Ar isotherms for MFI zeolite (Si/Al=500) have been measured at temperatures of 77–94 K, from which the differential adsorption energies of N2 and Ar are calculated. The interaction of N2 with channel surface of MFI zeolite is greater than that of Ar in the range of α s =0.1–0.7. The hystereses are detected for the N2 isotherm in p/p o=0.1–0.3 at 77.4 K and for the Ar isotherm in p/p o=3×10−4–2×10−3 at 87.3 K. However, it is difficult to explain the hysteresis phenomenon using differential adsorption energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号