首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gas-phase structural parameters for ferrocenecarboxaldehyde have been determined using Fourier transform microwave spectroscopy. Rotational transitions due to a-, b-, and c-type dipole moments were measured. Eighteen rotational constants were determined by fitting the measured transitions of various isotopomers using a rigid rotor Hamiltonian with centrifugal distortion constants. Least-squares fit and Kraitchman analyses have been used to determine the gas-phase structural parameters and the atomic coordinates of the molecule using the rotational constants for various isotopomers. Structural parameters determined from the least-squares fit are the Fe-C bond lengths to the cyclopentadienyl rings, r(Fe-C)=2.047(4) A, and the distance between the carbon atoms of the cyclopentadienyl rings, r(C-C)=1.430(2) A and r(C1-C1')=1.46(1) A of ring carbon and aldehyde carbon atom. Structural parameters were also obtained using density-functional theory calculations, and these were quite helpful in resolving ambiguities in the structural fit analysis, and providing some fixed parameters for the structural analysis. The results of the least squares and the calculations indicate that the carbon atoms of the Cp groups for ferrocenecarboxaldehyde are in an eclipsed conformation in the ground vibrational state.  相似文献   

2.
The reaction of [Os3Rh(mu-H)3(CO)12] with an excess amount of 4-vinylphenol (as hydride acceptor) in refluxing m-xylene, chlorobenzene or benzene yielded the three new clusters [Os5Rh2(mu-CO){eta6-C6H4(CH3)2}(CO)16] 1, [Os5Rh2(mu-CO)(eta6-C6H5Cl)(CO)16] 2 and [Os5Rh2(mu-CO)(eta6-C6H6)(CO)16] 3. The treatment of [Os3Rh(mu-H)3(CO)12] 4 in refluxing toluene with an excess amount of 4-vinylphenol afforded a new complex, [Os4Rh(mu-H)(eta6-C6H5CH3)(CO)12], which was isolated as a brown complex in 20% yield together with two known compounds, [Os5Rh2(eta6-C6H5CH3)(mu-CO)(CO)16] in 10% yield and [Os3Rh4(mu3-eta1:eta1:eta1-C6H5CH3)(CO)13] in 5% yield. Complexes 1-4 were fully characterized by IR, 1H NMR spectroscopy, mass spectroscopy, elemental analysis and X-ray crystallography. The molecular structures of compounds 1-3 are isomorphous, and only differ in the arene-derivatives that attach to the same metal core. Their metal cores can be viewed as a monocapped octahedral, in which an osmium atom caps one of the Os-Os-Os triangular faces of the Os4Rh2 metal framework. Complex 4 has a trigonal-bipyramidal metal core with a C6H5Me ligand that is terminally bound to the Rh atom that lies in the trigonal plane of the metal core. The hydrogenation of [Os5Rh2(eta6-C6H5CH3)(mu-CO)(CO)16] with [Os3(mu-H)2(CO)10] in chloroform under reflux resulted in two hydrogen-rich compounds: [Os7Rh3(mu-H)11(CO)23] 5 and [Os5Rh3Cl(mu-H)8(CO)18] 6, both in moderate yields. The reaction of [Os5Rh2(eta6-C6H5CH3)(mu-CO)(CO)16] with hydrogen in refluxing chloroform yielded a new cluster compound, [Os5Rh(mu-H)5(CO)18] 7, in 20% yield, together with a known osmium-rhodium cluster, [Os6Rh(mu-H)7(mu-CO)(CO)18], as a major compound. Clusters 5, 6, and 7 have been fully characterized by both spectroscopic and crystallographic methods. Additionally, a deuterium-exchange experiment was performed on [Os7Rh3(mu-H)11(CO)23] 5 and [Os5Rh3Cl(mu-H)8(CO)18] 6. Both the compounds proved to be able to exchange the H atom with D in the presence of D2SO4, and the absence of the hydride signal in the 1H NMR spectrum is consistent with this. Therefore, clusters 5 and 6 may serve as appropriate new hydrogen storage models.  相似文献   

3.
The complex [H(EtOH)2][{OsCl(eta4-COD)}2(mu-H)(mu-Cl)2] (1) has been prepared in high yield by treatment of OsCl3.3H2O (54% Os) with 1,5-cyclooctadiene in ethanol under reflux. Under air, it is unstable and undergoes oxidation by action of O2 to afford the neutral derivative {OsCl(eta4-COD)}2(mu-H)(mu-Cl)2 (2). The terminal chlorine ligands of the anion of 1 are activated toward nucleophilic substitution. Thus, reaction of the salt [NBu4][{OsCl(eta4-COD)}2(mu-H)(mu-Cl)2] (1a) with NaCp in toluene gives [NBu4][{Os(mu1-C5H5)(eta4-COD)}(mu-H)(mu-Cl)2{OsCl(eta4-COD)}] (3) as a result of the replacement of one of the terminal chlorine atoms by the cyclopentadienyl ligand. The CH2 group of the latter can be deprotonated by the bridging methoxy ligand of the iridium dimer [Ir(mu-OMe)(eta4-COD)]2. The reaction leads to the trinuclear derivative [NBu4][{(eta4-COD)Ir(mu5-C5H4-mu1)Os(eta4-COD)}(mu-H)(mu-Cl)2{OsCl(eta4-COD)}] (4) containing a bridging C5H4 ligand that is eta1-coordinated to an osmium atom of the dimeric unit and mu5-coordinated to the Ir(eta4-COD) moiety. Salt 1a also reacts with LiC[triple bond]CPh. In this case, the reaction produces the substitution of both terminal chlorine ligands to afford the bis(alkynyl) derivative [NBu4][{Os(C[triple bond]CPh)(eta4-COD)}2(mu-H)(mu-Cl)2] (5). Complexes 1, 2, 3, and 4 have been characterized by X-ray diffraction analysis. Although the separations between the osmium atoms are short, between 2.6696(4) and 2.8633(5) A, theoretical calculations indicate that only in 2 is there direct metal-metal interaction, as the bond order is 0.5.  相似文献   

4.
Reactions between unsaturated [H(2)Os(3)(CO)(9)(PR(3))] clusters (PR(3)= PPh(3), P(4-CF(3)-C(6)H(4))(3), PEt(3)) and 2,4-hexadiyne-1,6-diol have been studied. It was found that the diyne ligand easily reacts with all these complexes to give [HOs(3)(CO)8(PR3)-[mu3, eta1:eta3:eta1)-(CH(3)-C-C=CH-CH=C-O)]] complexes (V, VI and VII, respectively) containing the "Os3C3" pentagonal pyramid cluster framework. This structural pattern is formed through the diyne cyclization, dissociation of a CO ligand and eventual coordination of the cyclized organic moiety to the osmium triangle in the [mu3, eta1:eta3:eta1) manner. In the case of the PEt(3) substituted cluster the second hydride transfer onto the organic fragment occurs to afford the nonhydride [Os(3)(CO)(8)(PR3)[mu3), eta1:eta2:eta1)-(CH(3)-CH-C=CH-CH=C-O)]] cluster, VIII, containing distorted pentagonal pyramid framework with a broken Os-C bond. Heating V, VI of VII and in hexane solutions results in formation of the regioisomers (Va, VIa and VIIa) with the phosphine ligand located at adjacent osmium atoms across the Os-Os bond bridged by the coordinated organic fragment. The most probable mechanism of the isomerization includes reversible phosphine migration between these metal centres. Solid-state structure of V, Va, VI, VIIa and VIII have been established by single crystal X-ray diffraction. A general mechanistic scheme for the diyne ligand cyclization and cluster framework transformations is suggested and discussed.  相似文献   

5.
Novel, very stable ruthenium and osmium containing terminal phosphinidene complexes [(eta(6)-Ar)(L)M=Mes*] (Ar=benzene, p-cymene; L=PR(3), CO, and RNC) have been prepared by dehydrohalogenation of novel [(eta(6)-Ar)MX(2)(PH(2)Mes*)] complexes in the presence of a stabilizing ligand. Xray crystal structures are reported for [(eta(6)-C(6)H(6))(PPh(3))Rud=PMes*] (9) and [(eta(6)-pCy)(PPh(3))Os=PMes*] (4). Dehydrohalogenation in the absence of a stabilizing ligand resulted in the new P-spiroannulated Ru(2)P(2)-ring structure 16. Dehydrohalogenation in the presence of but-2-yne gave a novel phosphaallyl complex [(eta(6)-Ar)Ru(eta(3)-R(2)PC(Me)CHMe)] 26, for which an X-ray crystal structure is reported. The mechanism by which 16 and 26 are obtained is presumed to involve the intermediate formation of the 16-electron (eta(6)-benzene)Rud=PMes* phosphinidene complex.  相似文献   

6.
The synthesis, spectroscopic characterization and X-ray crystal structure of a new chiral triosmium alkylidyne carbonyl cluster, (R,S)-[Os3(mu-H)2(CO)9{mu3-CPPh2(eta(5)-C5H4)Fe(eta(5)-C5H3(PPh2)CH(Me)NM(2)}] (1) are described. Compound 1 crystallizes in the non-centrosymmetric space group P2(1) and its absolute configuration has been established.The structure consists of an Os3C metal core with one of the PPh2 moieties of the chiral ferrocenylphosphine bonded to the apical alkylidyne carbon atom to give a zwitterionic cluster complex, reminiscent of the phosphorus ylide.  相似文献   

7.
Mild electrophilic C(sp2)-H cyclometalation of 2-phenylpyridine and N,N-dimethylbenzylamine by the chloro-bridged osmium(II) dimer [OsCl(micro-Cl)(eta6-C6H6)]2 in acetonitrile affords cyclometalated pseudotetrahedral OsII complexes [Os(C approximately N)(eta6-C6H6)(NCMe)]PF6 (C approximately N=o-C6H4py-kappa C,N (2) and o-C6H4CH2NMe2-kappa C,N (5), respectively) in good to excellent yields. The cyclometalation reactions are super sensitive to the nature of an external base. Sodium hydroxide is essential for cyclometalation of 2-phenylpyridine, but NaOH retards metalation of N,N-dimethylbenzylamine, the tertiary amine being self-sufficient as a base. Further reactions of compounds 2 and 5 with 1,10-phenanthroline or 2,2'-bipyridine (N approximately N) lead to the substitution of the eta6-bound benzene to produce octahedral species [Os(C approximately N)(N approximately N)(NCMe)2]PF6 or [Os(C approximately N)(N approximately N)2]PF6 in MeCN or MeOH as solvent, respectively. The cis configuration of the MeCN ligands in [Os(C approximately N)(phen)(NCMe)2]PF6 has been confirmed by an X-ray crystallographic study. Electrochemical investigation of the octahedral osma(II)cycles by cyclic voltammetry showed a pseudoreversible MIII/II redox feature at (-50)-(+109) and 190-300 mV versus Ag/AgCl in water and MeCN, respectively. As a possible application of the compounds, a rapid electron exchange between the reduced active site of glucose oxidase enzyme from Aspergillus niger and the electrochemically generated OsIII species has been demonstrated. The corresponding second-order rate constants cover the range (0.7-4.8)x10(6) M(-1) s(-1) at 25 degrees C and pH 7.  相似文献   

8.
Self-assembled monolayers (SAMs) of a mu 3-eta 2:eta 2:eta 2-C60 triosmium cluster complex Os3(CO)8(CN(CH2)3Si(OEt)3)(mu 3-eta 2:eta 2:eta 2-C60) (2) on ITO or Au surface exhibit ideal, well-defined electrochemical responses and remarkable electrochemical stability being reducible up to tetranionic species in their cyclic voltammograms.  相似文献   

9.
A family of dicationic diyne salts of the general formula [(Co2(CO)6)2-mu,eta2,eta2-(Nu-CH2C(triple bond)C-C(triple bond)CCH2-Nu)][BF4]2 [Nu = SMe2 (3); Nu = NC6H7, 3-picoline, (5); Nu = NC9H7, quinoline (7)] were prepared and fully characterized. Three X-ray molecular structures of 3, 5, and the neutral starting material 2,4-hexadiyne-1,6-diol complex [(Co2(CO)6)2-mu,eta2,eta2-(HO-CH2C(triple bond)C-C(triple bond)CCH2-OH)] (1) are presented. Complex 1 crystallizes in the triclinic space group P1 with a = 14.722(2) A, b = 14.571(3) A, c = 14.722(2) A, alpha = 105.17(1) degrees, beta = 113.30(1) degrees, gamma = 99.20(1) degrees, and Z = 4. Complex 3 crystallizes in the monoclinic space group P2(1)/n with a = 12.758(3) A, b = 13.360(3) A, c = 20.494(3) A, beta = 91.44(1) degrees, and Z = 4, and compound 5 also crystallizes in the monoclinic space group P2(1)/n with a = 9.426(2) A, b = 21.739(5) A, c = 18.704(3) A, beta = 94.86(1) degrees, and Z = 4. The X-ray structures provide us with valuable information on the arrangement of the Co2-alkyne units, which have a cis geometry and are in sharp contrast to that observed generally for diyne-tetracobalt compounds. Complex [(Co2(CO)6)2-mu,eta2,eta2-(Me2S-CH2C(triple bond)C-C(triple bond)CCH2-SMe2)][BF4]2 (3) reacts with N-, S-, and P-centered nucleophiles and affords the related substituted complexes in high yields. The stability and reactivity of the disulfonium diyne complex 3 toward nucleophiles are compared to those of the analogous disulfonium-yne complex [(Co2(CO)6)2-mu,eta2,eta2-(Me2S-CH2-C(triple bond)C-CH2-SMe2)][BF4]2 (4).  相似文献   

10.
The thermolysis of the phosphinidene complex [Cp*P[W(CO)5]2] (1) in toluene in the presence of tBuC(triple bond)CMe leads to the four-membered ring complexes [[[eta2-C(Me)C(tBu)]Cp*(CO)W(mu3-P)[W(CO)3]][eta4:eta1:eta1-P[W(CO)5]WCp*(CO)C(Me)C(tBu)]] (4) as the major product and [[W[Cp*(CO)2]W(CO)2WCp*(CO)[eta1:eta1-C(Me)C(tBu)]](mu,eta3:eta2:eta1-P2[W(CO)5]] (5). The reaction of 1 with PhC(triple bond)CPh leads to [[W(Co)2[eta2-C(Ph)C(Ph)]][(eta4:eta1-P(W(CO)5]W[Cp*(CO)2)C(Ph)C(Ph)]] (6). The products 4 and 6 can be regarded as the formal cycloaddition products of the phosphido complex intermediate [Cp*(CO)2W(triple bond)P --> W(CO)5] (B), formed by Cp* migration within the phosphinidene complex 1. Furthermore, the reaction of 1 with PhC(triple bond)CPh gives the minor product [[[eta2:eta1-C(Ph)C(Ph)]2[W(CO)4]2][mu,eta1:eta1-P[C(Me)[C(Me)]3C(Me)][C(Ph)](C(Ph)]] (7) as a result of a 1,3-dipolaric cycloaddition of the alkyne into a phosphaallylic subunit of the Cp*P moiety of 1. Compounds 4-7 have been characterized by means of their spectroscopic data as well as by single-crystal X-ray structure analysis.  相似文献   

11.
A comparative study of the reactivity of isolobal rhenium and molybdenum carbonylmetallates containing a borole, in [Re(eta5-C4H4BPh)(CO)3]- (2), a boratanaphthalene, in [Mo(eta5-2,4-MeC9H6BMe)(CO)3]- (4a) and [Mo(eta5-2,4-MeC9H6BNi-Pr2)(CO)3]- (4b), a boratabenzene, in [Mo(eta5-3,5-Me2C5H3BNi-Pr2)(CO)3]- (6) or a dimethylaminocyclopentadienyl ligand, in [Mo(eta5-C5H4NMe2)(CO)3]- (7), toward palladium(II), gold(I), mercury(II) and platinum(II) complexes has allowed an evaluation of the role of these pi-bonded ligands on the structures and unprecedented coordination modes observed in the resulting metal-metal bonded, heterometallic complexes. The new metallate 6 was reacted with [AuCl(PPh3)], and with 1 or 2 equiv. HgCl2, which afforded the new heterodinuclear complexes [Au{Mo(eta5-3,5-Me2C5H3BNi-Pr2)(CO)3}(PPh3)] (Mo-Au) (10) and [Hg{Mo(eta5-3,5-Me2C5H3BNi-Pr2)(CO)3}Cl] (Hg-Mo) (11) and the heterometallic chain complex [Hg{Mo(eta5-3,5-Me2C5H3BNi-Pr2)(CO)3}2] (Mo-Hg-Mo) (12), respectively. Reactions of the new metallate 7 with HgCl2, trans-[PtCl2(CNt-Bu)2] and trans-[PtCl2(NCPh)2] yielded the heterodinuclear complex [Hg{Mo(eta5-C5H4NMe2)(CO)3}Cl] (Mo-Hg) (15), the heterotrinuclear chain complexes trans-[Pt{Mo(eta5-C5H4NMe2)(CO)3}2(CNt-Bu)2] (Mo-Pt-Mo) (16) and trans-[Pt{Mo(eta5-C5H4NMe2)(CO)3}2(NCPh)2] (Mo-Pt-Mo) (17), the mononuclear complex [Mo(eta5-C5H4NMe2)(CO)3Cl] (18), the lozenge-type cluster [Mo2Pt2(eta5-C5H4NMe2)2(CO)8] (19) and the heterodinuclear complex [[upper bond 1 start]Pt{Mo(eta5-C5H4N[upper bond 1 end]Me2)(CO)3}(NCPh)Cl](Mo-Pt) (20), respectively. The complexes 11, 16, 17.2THF, 18 and 20 have been structurally characterized by X-ray diffraction and 20 differs from all other compounds in that the dimethylaminocyclopentadienyl ligand forms a bridge between the metals.  相似文献   

12.
Ring borylation of [Me4C2(eta5-C5H4)2CrCO] by B(C6F5)3 affords the zwitterionic complex {Me4(eta5-C5H4)(eta5-C4H3B(C6F5)3)}CrH(CO) (1), the first structurally characterized bent-metallocene complex of Cr(4+). This species decomposes thermally to the zwitterionic species {Me4(eta5-C5H4)(eta5-C4H3B(C6F5)3)}Cr (2) and the ionic species [Me4C2(eta5-C5H4)2CrCO][HB(C6F5)3] (3). The molecular structure of 2 is also described.  相似文献   

13.
The ethene derivatives [(eta(5)-C(5)R(5))RuX(C(2)H(4))(PPh(3))] with R=H and Me, which have been prepared from the eta(3)-allylic compounds [(eta(5)-C(5)R(5))Ru(eta(3)-2-MeC(3)H(4))(PPh(3))] (1, 2) and acids HX under an ethene atmosphere, are excellent starting materials for the synthesis of a series of new halfsandwich-type ruthenium(II) complexes. The olefinic ligand is replaced not only by CO and pyridine, but also by internal and terminal alkynes to give (for X=Cl) alkyne, vinylidene, and allene compounds of the general composition [(eta(5)-C(5)R(5))RuCl(L)(PPh(3))] with L=C(2)(CO(2)Me)(2), Me(3)SiC(2)CO(2)Et, C=CHCO(2)R, and C(3)H(4). The allenylidene complex [(eta(5)-C(5)H(5))RuCl(=C=C=CPh(2))(PPh(3))] is directly accessible from 1 (R=H) in two steps with the propargylic alcohol HC triple bond CC(OH)Ph(2) as the precursor. The reactions of the ethene derivatives [(eta(5)-C(5)H(5))RuX(C(2)H(4))(PPh(3))] (X=Cl, CF(3)CO(2)) with diazo compounds RR'CN(2) yield the corresponding carbene complexes [(eta(5)-C(5)R(5))RuX(=CRR')(PPh(3))], while with ethyl diazoacetate (for X=Cl) the diethyl maleate compound [(eta(5)-C(5)H(5))RuCl[eta(2)-Z-C(2)H(2)(CO(2)Et)(2)](PPh(3))] is obtained. Halfsandwich-type ruthenium(II) complexes [(eta(5)-C(5)R(5))RuCl(=CHR')(PPh(3))] with secondary carbenes as ligands, as well as cationic species [(eta(5)-C(5)H(5))Ru(=CPh(2))(L)(PPh(3))]X with L=CO and CNtBu and X=AlCl(4) and PF(6), have also been prepared. The neutral compounds [(eta(5)-C(5)H(5))RuCl(=CRR')(PPh(3))] react with phenyllithium, methyllithium, and the vinyl Grignard reagent CH(2)=CHMgBr by displacement of the chloride and subsequent C-C coupling to generate halfsandwich-type ruthenium(II) complexes with eta(3)-benzyl, eta(3)-allyl, and substituted olefins as ligands. Protolytic cleavage of the metal-allylic bond in [(eta(5)-C(5)H(5))Ru(eta(3)-CH(2)CHCR(2))(PPh(3))] with acetic acid affords the corresponding olefins R(2)C=CHCH(3). The by-product of this process is the acetato derivative [(eta(5)-C(5)H(5))Ru(kappa(2)-O(2)CCH(3))(PPh(3))], which can be reconverted to the carbene complexes [(eta(5)-C(5)H(5))RuCl(=CR(2))(PPh(3))] in a one-pot reaction with R(2)CN(2) and Et(3)NHCl.  相似文献   

14.
The reaction of Ir4(CO)8(PMe3)4 with excess C60 in refluxing 1,2-dichlorobenzene, followed by treatment by CNR (R = CH2C6H5) at 70 degrees C, affords a fullerene-metal sandwich complex Ir4(CO)3(mu4-CH)(PMe3)2(mu-PMe2)(CNR)(mu-eta2,eta2-C60)(mu4-eta1,eta1,eta2,eta2-C60) (1), which exhibits an interesting structural feature of two metal atoms bridging the two C60 centers as well as the first example of a mu4-eta1,eta1,eta2,eta2-C60 bonding mode. Compound 1 has been characterized by NMR spectroscopy, elemental analysis, and X-ray diffraction study. A cyclic voltammetry study reveals strong electronic communication between the two C60 centers in 1, which is due to the presence of a wide channel of two metal centers between the two C60 cages for efficient electronic interaction.  相似文献   

15.
A series of carbenerhodium(I) complexes of the general composition [(eta5-C5H5)Rh(=CRR')(L)] (2a-2i) with R = R'= aryl and L = SbiPr3 or PR3 has been prepared from the square-planar precursors trans-[RhCl(=CRR')(L)2] and NaC5H5 in excellent yields. Reaction of the triisopropylsibane derivative 2a. which contains a rather labile Rh-Sb bond, with CO, PMe3, and CNR (R = Me, CH2Ph, tBu) leads to the displacement of the SbiPr3 ligand and affords the substitution products [(eta5-C5H5)Rh(=CPh2)(L)] (3-7). In contrast, treatment of the triisopropylphosphane compound 2c with CO and CNtBu leads to the cleavage of the Rh=CPh2 bond and gives besides [(eta5-C5H5)Rh(PiPr3)(L)] (10, 12) by metal-assisted C-C coupling diphenylketene Ph2C=C=O (11) or the corresponding imine Ph2C=C=NtBu (13). While the reaction of 2a, c with C2H4 yields [(eta5-C5H5)Rh(C2H4)(L)] (14, 15) and the trisubstituted olefin Ph2C=CHCH3 (16), treatment of 2a, c with RN3 leads to the cleavage of both the Rh-EiPr3 and Rh=CPh2 bonds and gives the chelate complexes [(eta5-C5H5)Rh(kappa2-RNNNNR)] (19, 20). The substitution products 3 (L=CO) and 4 (L= PMe3) react with an equimolar amount of sulfur or selenium by addition of the chalcogen to the Rh=CPh2 bond to generate the complexes [(eta5-C5H5)Rh(kappa2-ECPh2)(L)] (21-24) with thio- or selenobenzophenone as ligand. Similarly, treatment of 3 with CuCl affords the unusual 1:2 adduct [(eta5-C5H5)(CO)Rh(mu-CPh2)(CuCl)2] (25), which reacts with NaC5H5 to form [(eta5-C5H5)(CO)Rh(muCPh2)Cu(eta5-C5H5)] (26). The molecular structures of 3 and 22 have been determined by X-ray crystallography.  相似文献   

16.
Reactions of (eta5-C5Me4R)(CO)2(MeCN)WMe (R = Me, Et) with HPh2SiCCtBu gave the novel alkynyl-bridged W-Si complexes, (eta5-C5Me4R)(CO)2W(mu-eta1:eta2-CCtBu)(SiPh2) (R = Me, Et), whose alkynyl ligands bridge the tungsten and silicon atoms in an eta1:eta2-coordination mode. The structures of these complexes were fully characterized, including X-ray crystallography. Treatment of (eta5-C5Me5)(CO)2W(mu-eta1:eta2-CCtBu)(SiPh2) with acetone resulted in acetone insertion into the silicon-alkynyl linkage followed by intramolecular C-H activation of the tBu group to give the chelate-type alkyl-alkene complex, (eta5-C5Me5)(CO)2W(eta1:eta2-CH2CMe2C=CHSiPh2OCMe2).  相似文献   

17.
The coordination of phenanthrene to the d8 Pt(II) center in (SP-4-2)-[Pt(C6F5)2(CO)(eta2-C14H10)] causes a slight pyramidalization at the metal-bound C atoms (C9 and C10), but no perceptible elongation of the corresponding C-C bond [C(13)-C(14) 132.0(5) vs. 133.8(5) pm in the free ligand].  相似文献   

18.
A series of oxo-bridged diosmium complexes with tpa ligand (tpa = tris(2-pyridylmethyl)amine) are synthesized. The hydrolytic reaction of the mononuclear osmium complex [Os(III)Cl(2)(tpa)]PF(6) in aqueous solution containing a sodium carboxylate yields a μ-oxo-μ-carboxylato-diosmium(III) complex, [Os(III)(2)(μ-O)(μ-RCOO)(tpa)(2)](PF(6))(3) (R = C(3)H(7) (1), CH(3) (2), or C(6)H(5) (3)). One-electron oxidation of 1 with (NH(4))(2)Ce(IV)(NO(3))(6) gives a mixed-valent [Os(III)Os(IV)(μ-O)(μ-C(3)H(7)COO)(tpa)(2)](PF(6))(4) complex (4). A mixed-valent di-μ-oxo-diosmium complex, [Os(III)Os(IV)(μ-O)(2)(tpa)(2)](PF(6))(3) (5), is also synthesized from 1 in an aerobic alkaline solution (pH 13.5). All the complexes exhibit strong absorption bands in a visible-near-infrared region based on interactions of the osmium dπ and oxygen pπ orbitals of the Os-O-Os moiety. The X-ray crystallographic analysis of 1, 3, and 4 shows that the osmium centers take a pseudo-octahedral geometry in the μ-oxo-μ-carboxylato-diosmium core. The mixed-valent osmium(III)osmium(IV) complex 4 has a shorter osmium-oxo bond and a larger osmium-oxo-osmium angle as compared with those of the diosmium(III) complex 1 having the same bridging carboxylate. Crystal structure of 5 reveals that the two osmium ions are bridged by two oxo groups to give an Os(2)(μ-O)(2) core with the significantly short osmium-osmium distance (2.51784(7) ?), which is indicative of a direct osmium-osmium bond formation with the bond order of 1.5 (σ(2)π(2)δ(2)δ*(2)π*(1) configuration). In the electrochemical studies, the μ-oxo-μ-carboxylato-diosmium(III) complexes exhibit two reversible Os(III)Os(III)/Os(III)Os(IV) and Os(III)Os(IV)/Os(IV)Os(IV) oxidation couples and one irreversible redox wave for the Os(III)Os(III)/Os(II)Os(III) couple in CH(3)CN. The irreversible reductive process becomes reversible in CH(3)CN/H(2)O (1:1 Britton-Robinson buffer; pH 5-11), where the {1H(+)/2e(-)} transfer process is indicated by the plot of the redox potentials against the pH values of the solution of 1. Thus, the μ-oxo-μ-butyrato-diosmium(III) center undergoes proton-coupled electron transfer to yield a μ-hydroxo-μ-butyrato-diosmisum(II) species. The di(μ-oxo) complex 5 exhibits one reversible Os(III)Os(IV)/Os(IV)Os(IV) oxidation process and one reversible Os(III)Os(IV)/Os(III)Os(III) reduction process in CH(3)CN. The comproportionation constants K(com) of the Os(III)Os(IV) states for the present diosmium complexes are on the order of 10(19). The values are significantly larger when compared with those of similar oxo-bridged dimetal complexes of ruthenium and rhenium.  相似文献   

19.
The mixed-metal complex, [RhOs(CO)(4)(dppm)(2)][BF(4)] (1; dppm = micro-Ph(2)PCH(2)PPh(2)) reacts with diazomethane to yield a number of products resulting from methylene incorporation into the bimetallic core. At -80 degrees C the reaction between 1 and CH(2)N(2) yields the methylene-bridged [RhOs(CO)(3)(micro-CH(2))(micro-CO)(dppm)(2)][BF(4)] (2), which reacts further at ambient temperature to give the allyl methyl species, [RhOs(eta(1)-C(3)H(5))(CH(3))(CO)(3)(dppm)(2)][BF(4)] (4). At intermediate temperatures compounds 1 and 2 react with diazomethane to yield the butanediyl complex [RhOs(C(4)H(8))(CO)(3)(dppm)(2)][BF(4)] (3) by the incorporation and coupling of four methylene units. Compound 2 is proposed to be an intermediate in the formation of 3 and 4 from 1 and on the basis of labeling studies a mechanism has been proposed in which sequential insertions of diazomethane-generated methylene fragments into the Rh-C bond of bridging hydrocarbyl fragments occur. Reaction of the tricarbonyl species, [RhOs(CO)(3)(micro-CH(2))(dppm)(2)][BF(4)] with diazomethane over a range of temperatures generates the ethylene complex [RhOs(eta(2)-C(2)H(4))(CO)(3)(dppm)(2)][BF(4)] (7a), but no further incorporation of methylene groups is observed. This observation suggests that carbonyl loss in the formation of the above allyl and butanediyl species only occurs after incorporation of the third methylene fragment. Attempts to generate C(2)-bridged species by the reaction of 1 with ethylene gave no reaction, however, in the presence of trimethylamine oxide the ethylene adducts [RhOs(eta(2)-C(2)H(4))(CO)(3)(dppm)(2)][BF(4)] (7b; an isomer of 7a) and [RhOs(eta(2)-C(2)H(4))(2)(CO)(2)(dppm)(2)][BF(4)] (8) were obtained. The relationship of the above products to the selective coupling of methylene groups, and the roles of the different metals are discussed.  相似文献   

20.
The silyl-substituted titanocene complex, (eta5-C5Me4SiMe2Ph)2Ti, coordinates dinitrogen upon cooling to -35 degrees C to yield an unprecedented example of a mono(dinitrogen) complex of a substituted bis(cyclopentadienyl) titanium compound, (eta5-C5Me4SiMe2Ph)2Ti(N2). Analogous monocarbonyl derivatives, (eta5-C5Me4R)2Ti(CO) (R = SiMe3, SiMe2Ph, CHMe2), have been prepared by mixing the dicarbonyl compounds with the corresponding sandwiches. Both (eta5-C5Me4SiMe2Ph)2Ti(N2) and (eta5-C5Me4SiMe2Ph)2Ti(CO) have been characterized by X-ray diffraction, and mixed N2-CO titanocene complexes have also been observed by in situ IR spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号