首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The transport of a reactive solute by diffusion and convection in a thin (or long) curved pipe is considered. Using asymptotic analysis with respect to the pipe’s thickness, the effective model for solute concentration is formally derived. A simple approximation is computed, showing explicitly the effects of the pipe’s geometry in nature and magnitude.  相似文献   

2.
A method of moment is employed to study the axial dispersion of passive tracer molecules released in an unsteady pressure-driven flow through an annular pipe which is oscillating around its longitudinal axis. The flow unsteadiness is caused by the oscillation of the tube around its axis as well as by a periodic pressure gradient. A finite difference implicit scheme is adopted to solve the Aris integral moment equations arising from the unsteady convective-diffusion equation for all time periods. The main objective is to study the nature of the dispersion coeffcient and mean concentration distribution under the sole as well as combined oscillation of the two driving forces. The behaviour of the dispersion coeffcient due to the variation of the aspect ratio, the absorption parameter for purely periodic flow has been examined and the sound response from dispersion coeffcient is found with the variation of these parameters in the sole presence of pressure pulsation. There is a remarkable difference in the behavior of the dispersion coeffcient depending on whether the ratio of two frequencies arising from the oscillations of the tube and the pressure gradient possesses a proper fraction or not. Oscillation of the tube produces much more dispersion than the pulsation of the pressure gradient and their combined effect leads to a further increase in dispersion. Tube oscillation shows a stronger effect on the dispersion coeffcient than the pressure pulsation though the effect of physical parameters are pronounced in the presence of pressure pulsation. The effect of the frequency parameter on the axial distribution of mean concentration is insensible when the oscillation of the annular tube is the only forcing. However this effect is much noticeable under the combined action of both forcing and much more effective under the sole influence of pressure pulsation.  相似文献   

3.
A method of moment is employed to study the axial dispersion of passive tracer molecules released in an unsteady pressure-driven flow through an annular pipe which is oscillating around its longitudinal axis. The flow unsteadiness is caused by the oscillation of the tube around its axis as well as by a periodic pressure gradient. A finite difference implicit scheme is adopted to solve the Aris integral moment equations arising from the unsteady convective-diffusion equation for all time periods. The main objective is to study the nature of the dispersion coeffcient and mean concentration distribution under the sole as well as combined oscillation of the two driving forces. The behaviour of the dispersion coeffcient due to the variation of the aspect ratio, the absorption parameter for purely periodic flow has been examined and the sound response from dispersion coeffcient is found with the variation of these parameters in the sole presence of pressure pulsation. There is a remarkable difference in the behavior of the dispersion coeffcient depending on whether the ratio of two frequencies arising from the oscillations of the tube and the pressure gradient possesses a proper fraction or not. Oscillation of the tube produces much more dispersion than the pulsation of the pressure gradient and their combined effect leads to a further increase in dispersion. Tube oscillation shows a stronger effect on the dispersion coeffcient than the pressure pulsation though the effect of physical parameters are pronounced in the presence of pressure pulsation. The effect of the frequency parameter on the axial distribution of mean concentration is insensible when the oscillation of the annular tube is the only forcing. However this effect is much noticeable under the combined action of both forcing and much more effective under the sole influence of pressure pulsation.  相似文献   

4.
The incompressible flow of a Newtonian fluid over a backward-facing step is investigated numerically. The geometry is an annular pipe in which the radius of the inner cylinder decreases suddenly. Keeping the radial expansion ratio fixed axisymmetric flows are computed for outlet radius ratios from 0.1 to 1 (ratio of the inner to the outer outlet radius). The Reynolds number at which the flow separates from the outer cylinder decreases as the outlet radius ratio decreases for constant inlet geometry. The growth with Reynolds number of the recirculation zone on the inner outlet cylinder just behind the step is strongly reduced when the recirculation zone on the outer cylinder is established. (© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
6.
Influence of Interphase Mass Transfer (IMT) on the unsteady convective diffusion in a fluid flow through a tube surrounded by a porous medium is examined against the background of no IMT. The three coefficients namely exchange coefficient, convection coefficient, and dispersion coefficient are evaluated asymptotically at large-time. The exchange coefficient exists due to IMT. All-time analysis is made analytically when there is no IMT. The mean concentration distribution is measured at a point inside and outside the slug. The peak of mean concentration is higher than that of pure convection and it is further enhanced with increase of porous parameter. (© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
We show well posedness for a model of nonlinear reactive transport of chemical in a deformable channel. The channel walls deform due to fluid–structure interaction between an unsteady flow of an incompressible, viscous fluid inside the channel and elastic channel walls. Chemical solutes, which are dissolved in the viscous, incompressible fluid, satisfy a convection–diffusion equation in the bulk fluid, while on the deforming walls, the solutes undergo nonlinear adsorption–desorption physico‐chemical reactions. The problem addresses scenarios that arise, for example, in studies of drug transport in blood vessels. We show the existence of a unique weak solution with solute concentrations that are non‐negative for all times. The analysis of the problem is carried out in the context of semi‐linear parabolic PDEs on moving domains. The arbitrary Lagrangian–Eulerian approach is used to address the domain movement, and the Galerkin method with the Picard–Lindelöf theorem is used to prove existence and uniqueness of approximate solutions. Energy estimates combined with the compactness arguments based on the Aubin–Lions lemma are used to prove convergence of the approximating sequences to the unique weak solution of the problem. It is shown that the solution satisfies the positivity property, that is, that the density of the solute remains non‐negative at all times, as long as the prescribed fluid domain motion is ‘reasonable’. This is the first well‐posedness result for reactive transport problems defined on moving domains of this type. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
Analytical solutions for two-dimensional oscillatory flow on free convective-radiation of an incompressible viscous fluid, through a highly porous medium bounded by an infinite vertical plate are reported. The Rosseland diffusion approximation is used to describe the radiation heat flux in the energy equation. The resulting non-linear partial differential equations were transformed into a set of ordinary differential equations using two-term series. The dimensionless governing equations for this investigation are solved analytically using two-term harmonic and non-harmonic functions. The free-stream velocity of the fluid vibrates about a mean constant value and the surface absorbs the fluid with constant velocity. Expressions for the velocity and the temperature are obtained. To know the physics of the problem analytical results are discussed with the help of graph.  相似文献   

9.
The intention of the present work is to carry out a systematic analysis of flow features in a tube, modelled as artery, having a local aneurysm in presence of haematocrit. The arterial model is treated to be axi-symmetric and rigid. The blood, flowing through the modelled artery, is treated to be Newtonian and non-homogeneous. For a thorough quantitative analysis of the flow characteristics such as wall pressure, flow velocity, wall shear stress, the unsteady incompressible Navier-Stokes equations in cylindrical polar co-ordinates under the laminar flow conditions are solved by using the finite-difference method. Finally, the numerical illustrations presented in this paper provide an effective measure to estimate the combined influence of haematocrit and aneurysm on flow characteristics. It is found that the magnitude of wall shear stress and also the length of separation increase with increasing values of the haematocrit parameter. The length of flow separation increases but the peak value of wall shear stress decreases with the increasing length of aneurysm. The peak value of wall shear stress as well as the length of separation increases with the increasing height of the aneurysm.  相似文献   

10.
We consider a class of singular Sturm-Liouville problems with a nonlinear convection and a strongly coupling source. Our investigation is motivated by, and then applied to, the study of transonic gas flow through a nozzle. We are interested in such solution properties as the exact number of solutions, the location and shape of boundary and interior layers, and nonlinear stability and instability of solutions when regarded as stationary solutions of the corresponding convective reaction-diffusion equations. Novel elements in our theory include a priori estimate for qualitative behavior of general solutions, a new class of boundary layers for expansion waves, and a local uniqueness analysis for transonic solutions with interior and boundary layers.  相似文献   

11.
An analytical and computational model for non-reactive solute transport in periodic heterogeneous media with arbitrary non-uniform flow and dispersion fields within the unit cell of length ε is described. The model lumps the effect of non-uniform flow and dispersion into an effective advection velocity Ve and an effective dispersion coefficient De. It is shown that both Ve and De are scale-dependent (dependent on the length scale of the microscopic heterogeneity, ε), dependent on the Péclet number Pe, and on a dimensionless parameter α that represents the effects of microscopic heterogeneity. The parameter α, confined to the range of [?0.5, 0.5] for the numerical example presented, depends on the flow direction and non-uniform flow and dispersion fields. Effective advection velocity Ve and dispersion coefficient De can be derived for any given flow and dispersion fields, and ε. Homogenized solutions describing the macroscopic variations can be obtained from the effective model. Solutions with sub-unit-cell accuracy can be constructed by homogenized solutions and its spatial derivatives. A numerical implementation of the model compared with direct numerical solutions using a fine grid, demonstrated that the new method was in good agreement with direct solutions, but with significant computational savings.  相似文献   

12.
The method of matched asymptotic expansions is used to study the flow out of a long tube or pipeline caused by a sudden rupture. The flow in the tube generated by the expansion wave propagating into the tube from the break point is shown to be modified substantially by the presence of wall friction. This depends primarily on the fact that, when there is wall friction, the velocity derivative along the tube becomes singular at the broken end exit for all times, as long as the flow is critical at the exit.
Résumé Le débit provenant d'un long tube ou d'un pipeline, suite à une rupture subite, a été étudié en employant la méthode des raccordements asymptotiques. On démontre que l'écoulement à l'intérieur du tube, généré par l'onde de détente qui se propage dans le tube à partir du point de rupture, subit une modification importante due au frottement pariétal. Ceci résulte principalement du fait qu'en cas de frottement pariétal, la dérive de vitesse le long du tube, à n'importe quel moment, devient singulière au point de rupture à condition que le débit soit critique à la sortie.
  相似文献   

13.
14.
This paper presents an extension of the exact solution of the steady laminar axisymmetric flow in a straight pipe of circular cross section with porous wall, given by R.M. Terrill, to the case of unsteady wall injection and/or suction. The cases of the pulsating parabolic profile and of the developed pulsating flow are investigated as examples. The pulsating flow in porous ducts has many applications in biomedical engineering and in other engineering areas.  相似文献   

15.
《Mathematische Nachrichten》2017,290(4):546-569
We study linearized, non‐stationary Navier–Stokes type equations with the given flux in an infinite pipe periodic of period length L with respect to . The existence and uniqueness of the solution is proved. Moreover, the convergence of the solution in a finite pipe of length to the L‐periodic solution as is investigated.  相似文献   

16.
The analysis of multiphase flow in porous media is of considerable significance in the field of petroleum reservoir simulation, where accurate predictions of fluid flow are important in assessing the performance of oil and gas fields. The specific case of two-phase immiscible flow is considered by first deriving the governing nonlinear partial differential equations. The space discretization is then carried out making use of the additional versatility of the finite element method compared with originally used finite differences. By using a pair of dependent variables P and R, the bandwidth of the discrete space-continuous time equations may be reduced to increase significantly the speed of the algorithm. A discussion of time-stepping methods is followed by an application of the technique to a five-spot,an extraction pattern used in the field. The boundary conditions used to simulate this flow pattern are also discussed.  相似文献   

17.
A novel pattern recognition approach to reactive navigation of a mobile robot is presented in this paper. A heuristic fuzzy-neuro network is developed for pattern-mapping between quantized ultrasonic sensory data and velocity commands to the robot. The design goal was to enable an autonomous mobile robot to navigate safely and efficiently to a target position in a previously unknown environment. Useful heuristic rules were combined with the fuzzy Kohonen clustering network (FKCN) to build the desired mapping between perception and motion. This method provides much faster response to unexpected events and is less sensitive to sensor misreading than conventional approaches. It allows continuous, fast motion of the mobile robot without any need to stop for obstacles. The effectiveness of the proposed method is demonstrated in a series of practical tests on our experimental mobile robot.  相似文献   

18.
In this paper, the asymptotic solution for the similarity equation of the laminar flow in a porous pipe with suction at expanding and contracting wall has been obtained using the singular perturbation method. However, this solution neglects exponentially small terms in the matching process. To take into account these exponentially small terms, a method involving the inclusion of exponentially small terms in a perturbation series was used to find the two solutions analytically. The series involving the exponentially small terms and expansion ratio predicts dual solutions. Furthermore, the result indicates that the expansion ratio has much important influence on the solutions. When the expansion ratio is zero, it is a special case that Terrill has discussed.  相似文献   

19.
In this paper we present a Doob type maximal inequality for stochastic processes satisfying the conditional increment control condition. If we assume, in addition, that the margins of the process have uniform exponential tail decay, we prove that the supremum of the process decays exponentially in the same manner. Then we apply this result to the construction of the almost everywhere stochastic flow to stochastic differential equations with singular time dependent divergence-free drift.  相似文献   

20.
The unsteady incompressible laminar flow in a semi-infinite porous circular pipe with injection or suction through the pipe wall whose radius varies with time is considered. The present analysis simulates the flow field by the burning of inner surface of cylindrical grain in a solid rocket motor, in which the burning surface regresses with time. We apply Lie-group method for determining symmetry reductions of partial differential equations. Lie-group method starts out with a general infinitesimal group of transformations under which given partial differential equations are invariant, then, the determining equations are derived [Ibragimov, Elementary Lie Group Analysis and Ordinary Differential Equations, Wiley, New York, 1999; Hydon, Symmetry Methods for Differential Equations, Cambridge University Press, Cambridge, 2000; Olver, Applications of Lie Groups to Differential Equations, Springer, New York, 1986; Seshadri, Na, Group invariance in engineering boundary value problems, Springer, New York, 1985; Yi, Fengxiang, Lie symmetries of mechanical systems with unilateral holonomic constraints, Chinese Sci. Bull. 45 (2000) 1354–1358; Moritz, Schwalm, Uherka, Finding Lie groups that reduce the order of discrete dynamical systems, J. Phys. A: Math. 31 (1998) 7379–7402; Nucci, Clarkson, The nonclassical method is more general than the direct method for symmetry reductions. An example of the Fitzhugh–Nagumo equation, Phys. Lett. A 164 (1992) 49–56; Basarab, Lahno, Group classification of nonlinear partial differential equations: a new approach to resolving the problem, Proceedings of Institute of Mathematics of NAS of Ukraine, vol. 43, 2002, pp. 86–92; Burde, Expanded Lie group transformations and similarity reductions of differential equations, Proceedings of Institute of Mathematics of NAS of Ukraine, vol. 43, 2002, pp. 93–101; Gandarias, Bruzon, Classical and nonclassical symmetries of a generalized Boussinesq equation, J. Nonlinear Math. Phys. 5 (1998) 8–12; Hill, Solution of Differential Equations by Means of One-Parameter Groups, Pitman Publishing Co., 1982]. The determining equations are a set of linear differential equations, the solution of which gives the transformation function or the infinitesimals of the dependent and independent variables. After the group has been determined, a solution to the given partial differential equation may be found from the invariant surface condition such that its solution leads to similarity variables that reduce the number of independent variables in the system. Effect of the cross-flow Reynolds number Re and the dimensionless wall expansion ratio α on velocity, flow streamlines, axial and radial pressure drop, and wall shear stress has been studied both analytically and numerically and the results are plotted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号