首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Quartz crystal microbalance with dissipation (QCM-D) monitoring was performed to investigate the impact of steam treatment (ST) on the enzymatic hydrolysis of lignocellulosic nanofibrils (LCNFs). ST at mild temperatures up to 140 °C mainly affected the hemicellulose content of LCNFs. The hemicellulose constituents in the water-soluble fraction and the residual LCNF were quantified. The impact of changes in hemicellulose by ST on enzymatic hydrolysis was monitored by QCM-D using Acremonium cellulase as a source of multicomponent enzymes including hemicellulases. LCNFs without ST showed distinctive initial changes in frequency and energy dissipation, which differed from those of pure cellulose film, whereas these changes shifted toward typical changes of enzymatic hydrolysis of pure cellulosic films with increasing ST temperature. The QCM-D results suggested that hemicellulose located around cellulose microfibrils is rapidly decomposed, thus exposing the cellulose surface shortly after initial enzymatic hydrolysis, and then the main enzymatic hydrolysis of cellulose occurs.  相似文献   

2.
In this paper, a quartz crystal microbalance with dissipation monitoring (QCM-D) is used to investigate humic acid (HA) adsorption onto alumina (Al(2)O(3)). The amount of adsorption and layer structures of HA were determined by the real-time monitoring of resonance frequency and energy dissipation changes (Δf and ΔD). The effect of HA concentration, HA molecular characteristics (molecular weight and polarity), and pH on HA adsorption onto Al(2)O(3) were investigated. The mass of HA adsorption increases as the concentration of HA increases. The masses are about 24, 60, and 87 ng cm(-2) as the concentration of DOC is 1.0, 4.85, and 92.0 mg L(-1), respectively. The adsorbed layer of HA is more nonrigid, and the mass of HA adsorption is higher at weakly acidic pH values. It was 20, 80, 65, and 45 ng cm(-2) at pH values of 4.5, 5.5, 6.5, and 8.0, respectively. This reveals that efficient HA removal by coagulation at weakly acidic pH values is not just due to the hydrolysis of Al ions as previously presumed. The adsorbed layer of hydrophobic HA is more nonrigid than hydrophobic HA (fractionated by Amberlite XAD-8 resin), and the mass adsorption for the hydrophobic fraction is about four times higher than the hydrophilic fraction (120 ng cm(-2) and 30 ng cm(-2)). The method is of value in the research to establish a quantified calculation model for the coagulation process.  相似文献   

3.
Time-resolved adsorption behavior of a human immunoglobin G (hIgG) protein on a hydrophobized gold surface is investigated using multitechniques: quartz crystal microbalance/dissipation (QCM-D) technique; combined surface plasmon resonance (SPR) and Love mode surface acoustic wave (SAW) technique; combined QCM-D and atomic force microscopy (AFM) technique. The adsorbed hIgG forms interfacial structures varying in organization from a submonolayer to a multilayer. An "end-on" IgG orientation in the monolayer film, associated with the surface coverage results, does not corroborate with the effective protein thickness determined from SPR/SAW measurements. This inconsistence is interpreted by a deformation effect induced by conformation change. This conformation change is confirmed by QCM-D measurement. Combined SPR/SAW measurements suggest that the adsorbed protein barely contains water after extended contact with the hydrophobic surface. This limited interfacial hydration also contributed to a continuous conformation change in the adsorbed protein layer. The viscoelastic variation associated with interfacial conformation changes induces about 1.5 times overestimation of the mass uptake in the QCM-D measurements. The merit of combined multitechnique measurements is demonstrated.  相似文献   

4.
Bilirubin adsorption on self-assembled phospholipid bilayers was studied using quartz crystal microbalance, and factors influencing its adsorption such as pH, temperature, and solution ionic strength were discussed in detail. The results show the amount of adsorbed bilirubin on self-assembled phospholipid bilayers is small at higher temperature and large at higher pH and solution ionic strength, and the adsorption kinetic parameter estimated from the in situ frequency measurement is (1.8+/-0.27)x10(6) M(-1) (mean +/- S.D.). With the present method, the desorption of adsorbed bilirubin caused by human serum albumin and the photoinduced decomposition of adsorbed bilirubin under light illumination were also examined. QCM measurement provides a useful method for monitoring the adsorption/desorption process of bilirubin on self-assembled phospholipid bilayers.  相似文献   

5.
A study of the interaction of four endoglucanases with amorphous cellulose films by neutron reflectometry (NR) and quartz crystal microbalance with dissipation monitoring (QCM-D) is reported. The endoglucanases include a mesophilic fungal endoglucanase (Cel45A from H. insolens), a processive endoglucanase from a marine bacterium (Cel5H from S. degradans ), and two from thermophilic bacteria (Cel9A from A. acidocaldarius and Cel5A from T. maritima ). The use of amorphous cellulose is motivated by the promise of ionic liquid pretreatment as a second generation technology that disrupts the native crystalline structure of cellulose. The endoglucanases displayed highly diverse behavior. Cel45A and Cel5H, which possess carbohydrate-binding modules (CBMs), penetrated and digested within the bulk of the films to a far greater extent than Cel9A and Cel5A, which lack CBMs. While both Cel45A and Cel5H were active within the bulk of the films, striking differences were observed. With Cel45A, substantial film expansion and interfacial broadening were observed, whereas for Cel5H the film thickness decreased with little interfacial broadening. These results are consistent with Cel45A digesting within the interior of cellulose chains as a classic endoglucanase, and Cel5H digesting predominantly at chain ends consistent with its designation as a processive endoglucanase.  相似文献   

6.
The systematic evaluation of the degradation of an amorphous cellulose film by a monocomponent endoglucanase (EG I) by using a quartz crystal microbalance with dissipation monitoring (QCM-D) identified several important aspects relevant to the study the kinetics of cellulose degradation by enzymes. It was demonstrated that, to properly evaluate the mechanism of action, steady state conditions in the experimental set up need to be reached. Rinsing or diluting the enzyme, as well as concentration of the enzyme, can have a pronounced effect on the hydrolysis. Quantification of the actual hydrolysis was carried out by measuring the film thickness reduction by atomic force microscopy after the enzymatic treatment. The values correlated well with the frequency data obtained by QCM-D measurement for corresponding films. This demonstrated that the evaluation of hydrolysis by QCM-D can be done quantitatively. Tuning of the initial thickness of films enabled variation of the volume of substrate available for hydrolysis which was then utilized in establishing a correlation between substrate volume and hydrolytic activity of EG I as measured by QCM-D. It was shown that, although the amount of substrate affects the absolute rate of hydrolysis, the relative rate of hydrolysis does not depend on the initial amount of substrate in steady state system. With this experimental setup it was also possible to demonstrate the impact of concentration on crowding of enzyme and subsequent hydrolysis efficiency. This effort also shows the action of EG I on a fully amorphous substrate as observed by QCM-D. The enzyme was shown to work uniformly within the whole volume of swollen film, however being unable to fully degrade the amorphous film.  相似文献   

7.
Organic corrosion inhibitors offer a huge potential of lowering product cost and manufacturing complexity in printed circuit board industry. Up to now, there is no reliable and fast method available to classify materials according to their ability to prevent copper from corrosion based on kinetic data of adsorption. We investigated the potential of the recently presented fast impedance-scanning quartz microbalance (FIS-QCM) to perform such studies. We selected poly(vinylimidazole) (PVI) that is known for its excellent ability to prevent copper from corrosion. However, kinetics and free energy of adsorption of PVI were never investigated. This paper presents the results of these studies. Reliable kinetic data were obtained, and the measurements show also the excellent frequency stability of this device that enables the detection of very small changes in resonance behaviour of the sensor quartz crystal, even below 1?Hz.  相似文献   

8.
A quartz crystal microbalance with dissipation monitoring (QCM-D) was used to assess the physical properties of interpenetrating polymer networks (IPNs) through swelling experiments in ambient humidity and in phosphate-buffered saline (PBS), pH 7.4. The IPNs, based on acrylamide (AAm) and poly(ethylene glycol) (pEG), swell from thin, rigid films when dry (16.7 +/- 5.2 nm on Si/SiO(2)) to expanded, viscoelastic films when hydrated (107 +/- 24.2 nm on Si/SiO2). The dry IPNs could be analyzed using the Sauerbrey relationship, but for the hydrated films it was necessary to interpret QCM-D data with a Kelvin-Voigt viscoelastic model. A complex modulus |G| of 116 +/- 38.1 kPa for the swollen IPN surface on Si/SiO2 was defined by the model. The QCM-D was also employed to quantify the adsorption of human fibrinogen, a protein important in thrombus formation, onto the IPNs. Fibrinogen adsorption studies demonstrated the sensitivity of the QCM-D, as well as confirmed the nonfouling nature of the IPN surface, where less than 5 ng/cm2 of fibrinogen was adsorbed.  相似文献   

9.
The adsorption of extracted and purified samples of asphaltenes and resins onto gold surfaces has been studied as a function of bulk concentration using a quartz crystal microbalance with dissipation measurements (QCM-D). With this device, which works equally well in transparent, opaque, and nontransparent samples, the adsorbed amount is measured through a change in resonant frequency of the quartz oscillator. The measured change in dissipation reports on changes in layer viscoelasticity and slip of the solvent at the surface. The results show that the adsorbed amount for resins from heptane corresponds to a rigidly attached monolayer. The adsorbed amount decreases with increasing amount of toluene in the solvent and is virtually zero in pure toluene. Asphaltenes, on the other hand, adsorb in large quantities and the mass and dissipation data demonstrate the presence of aggregates on the surface. The aggregates are firmly attached and cannot be removed by addition of resins. On the other hand, resins and asphaltenes associate in bulk liquid and the adsorption from mixtures containing both resins and asphaltenes is markedly different from that obtained from the pure components. Hence, we conclude that preformed resin aggregates adsorb to the surface. These results are compared and discussed in relation to adsorption from crude oil diluted in heptane/toluene mixtures.  相似文献   

10.
We have used computational fluid dynamics modeling (CFD) to synchronize the flow conditions in the flow channels of two complementary surface-sensitive characterization techniques: surface plasmon resonance (SPR) and quartz crystal microbalance (QCM). Since the footprint of the flow channels of the two devices is specified by their function, the flow behavior can only be varied either by altering the height of the flow channel, or altering the volumetric rate of flow (flow rate) through the channel. The relevant quantity that must be calibrated is the shear strain on the measurement surface (center and bottom) of the flow channel. Our CFD modeling shows that the flow behavior is in the Stokes flow regime. We were thus able to generate a scaling expression with parameters for flow rate and flow channel height for each of the two devices: f(QCM)=2.64f(SPR)(h(QCM)/h(SPR)(2), where f(QCM) and f(SPR) are the flow rates in the SPR and QCM flow channels, respectively, and h(QCM)/h(SPR) is the ratio of the heights of the two channels. We demonstrate the success of our calibration procedure through the combined use of commercially available SPR and QCM flow channel devices on both a biomolecular interaction system of surface immobilized biotin and streptavidin and a targeted drug delivery model system of biotinylated liposomes interacting with a streptavidin functionalized surface.  相似文献   

11.
Adsorption behavior and water content of adsorbed layers of four dispersants for aqueous ceramic processing were studied by quartz crystal microbalance with dissipation monitoring (QCM-D) on alumina surfaces. The dispersants were a poly(acrylic acid), a lignosulfonate, and two hydrophilic comb copolymers with nonionic polyoxyethylene chains of different molecular weights. A Voigt model was applied to analyze the viscoelastic behavior of the adsorbed dispersant layers. The results from QCM-D were compared with viscoelastic properties determined by in situ dynamic rheology measurements of highly concentrated alumina suspensions during slip casting. The QCM-D results showed that both the poly(acrylic acid) and the lignosulfonate adsorbed in low amounts and in a flat conformation, which generated thin, highly rigid layers less than 1 nm thick. The water content of these layers was found to be around 30% for the lignosulfonate and 35% for the poly(acrylic acid). High casting rate and strength in terms of storage modulus were observed in the final consolidate of the suspensions with the two polyelectrolytes. In contrast, the high molecular weight comb copolymer adsorbed in a less elastic layer with a thickness of about 6 nm, which is enough to provide steric stabilization. The viscous behavior of this layer was attributed to high water content, which was calculated to be around 90%. Such a water-rich layer gives a lubrication effect, which allows for reorientation of particles during the consolidation process, resulting in a high final strength of the ceramic material. During consolidation, the suspension showed a slow casting rate, most likely due to rearrangement facilitated by the lubricating layer. The short-chain comb copolymer adsorbed in a 1.5 nm thick, rigid layer and gave low final strength to the consolidated suspension. It is likely that the poor consolidation behavior is caused by flocculation due to insufficient stabilization of the dispersion.  相似文献   

12.
The adsorption characteristics of three proteins [bovine serum albumin (BSA), myoglobin (Mb), and cytochrome c (CytC)] onto self-assembled monolayers of mercaptoundecanoic acid (MUA) on both gold nanoparticles (AuNP) and gold surfaces (Au) are described. The combination of quartz crystal microbalance measurements with dissipation (QCM-D) and pH titrations of the zeta-potential provide information on layer structure, surface coverage, and potential. All three proteins formed adsorption layers consisting of an irreversibly adsorbed fraction and a reversibly adsorbed fraction. BSA showed the highest affinity for the MUA/Au, forming an irreversibly adsorbed rigid monolayer with a side-down orientation and packing close to that expected in the jamming limit. In addition, BSA showed a large change in the adsorbed mass due to reversibly bound protein. The data indicate that the irreversibly adsorbed fraction of CytC is a monolayer structure, whereas the irreversibly adsorbed Mb is present in form of a bilayer. The observation of stable BSA complexes on MUA/AuNPs at the isoelectric point by zeta-potential measurements demonstrates that BSA can sterically stabilize MUA/AuNP. On the other hand, MUA/AuNP coated with either Mb or CytC formed a reversible flocculated state at the isoelectric point. The colloidal stability differences may be correlated with weaker binding in the reversibly bound overlayer in the case of Mb and CytC as compared to BSA.  相似文献   

13.
Surface initiated polymerization (SIP) is a valuable tool in synthesizing functional polymer brushes, yet the kinetic understanding of SIP lags behind the development of its application. We apply quartz crystal microbalance (QCM) to address two issues that are not fully addressed yet play a central role in the rational design of functional polymer brushes, namely quantitative determination of the kinetics and the initiator efficiency (IE) of SIP. SIP are monitored online using QCM. Two quantitative frequency-thickness (f-T) relations make the direct determination and comparison of the rate of polymerization possible even for different monomers. Based on the bi-termination model, the kinetics of SIP is simply described by two variables, which are related to two polymerization constants, namely a = 1/(k p,s,app−[M][R·]0) and b = k t,s,app/(k p,s,app[M]). Factors that could alter the kinetics of SIP are studied, including (i) the molecular weight of monomers, (ii) the solvent used, (iii) the initial density of the initiator, (iv) the concentration of monomer, [M], and (v) the catalyst system (ratio among the ingredients, metal, ligands, and additives). The dynamic nature of IE is also described by these two variables, IE = a/(a + bt). Instead of the molecular weight and the polydispersity, we suggest that film thickness, the two kinetic parameters (a and b), and the initial density of the initiator and IE be the parameters that characterize ultra-thin polymer brushes. Besides the kinetics study of SIP, the reported method has many other applications, for example, in the fast screening of catalyst system for SIP and other polymerization systems.  相似文献   

14.
15.
Proteinaceous conditioning films (pCFs) are thought to play a key role in microbial adhesion, leading to the fouling of technical and biomedical devices and biofilm formation, which in turn causes material damage or persistent infections, respectively. However, little is definitively known about the process of surface conditioning via proteins. Herein, we demonstrate the potential of quartz crystal microbalance with dissipation coupled to MALDI-ToF mass spectrometry (QCM-D-MALDI) to investigate protein adsorption on different surfaces, enabling both the monitoring of CF formation and the determination of the molecular composition of CFs. After running QCM-D experiments, a subsequent tryptic on chip digestion step allows the identification of the proteins deposited on the sensor chip surface via MALDI-ToF mass spectrometry. Prominent blood plasma proteins, i.e., human serum albumin (HSA), fibrinogen (FG) and fibronectin (FN), were used. Chemically well defined sensor surfaces were prepared, among others, via self-assembled monolayer (SAM) technology. In cases where protein adsorption was observed by QCM-D, the adsorbed proteins were clearly detected and identified using MALDI-ToF/MS for both single-protein solutions of HSA, FG and FN as well as for protein mixtures. However, for equimolar protein mixtures on TiO2 surfaces, only signals attributed to FG and FN were observed in the mass spectra. No signals indicating the presence of HSA could be detected. This finding leads to the assumption that only FG and FN attach to the TiO2 sensor surface under the given experimental conditions.  相似文献   

16.
The adsorption kinetics of an engineered gold binding peptide on gold surface was studied by using both quartz crystal microbalance (QCM) and surface plasmon resonance (SPR) spectroscopy systems. The gold binding peptide was originally selected as a 14-amino acid sequence by cell surface display and then engineered to have a 3-repeat form (3R-GBP1) with improved binding characteristics. Both sets of adsorption data for 3R-GBP1 were fit to Langmuir models to extract kinetics and thermodynamics parameters. In SPR, the adsorption onto the surface shows a biexponential behavior and this is explained as the effect of bimodal surface topology of the polycrystalline gold substrate on 3R-GBP1 binding. Depending on the concentration of the peptide, a preferential adsorption on the surface takes place with different energy levels. The kinetic parameters (e.g., K(eq) approximately 10(7) M(-1)) and the binding energy (approximately -8.0 kcal/mol) are comparable to synthetic-based self-assembled monolayers. The results demonstrate the potential utilization of genetically engineered inorganic surface-specific peptides as molecular substrates due to their binding specificity, stability, and functionality in an aqueous-based environment.  相似文献   

17.
Quartz crystal microbalance with dissipation (QCM-D) monitoring is a powerful tool used to sensitively examine the real-time responses of polymer films to external responses. For example, the technique is commonly used to monitor film growth, material adsorption, thin film swelling, and ion exchange. With its rapidly expanding use, this review is intended to introduce new users to the basic principles of QCM-D, along with practical challenges and remedies specific to polymer thin films. For both new and experienced users, specific case studies are highlighted including layer-by-layer assembly, electrochemical QCM-D, swelling, sensing, and biological application. Last, the review recommends future directions for research and areas of growth.  相似文献   

18.
Mechanical contact between a viscoelastic lens and a viscoelastic film has been probed by means of a quartz crystal microbalance operated in the impedance analysis mode. The frequency shift induced by the formation of the contact decreases with increasing film thickness because of the finite penetration depth of the acoustic shear wave. The dependence of frequency and bandwidth on film thickness and contact area is described within a sheet-contact model, which can be employed to quantitatively analyze mechanical contact in a wide range of materials problems. The model was tested by bringing a quartz crystal coated with an elastomeric gel into contact with a hemispherical cap of a similar gel. Both gels consisted of the thermoreversible gel Kraton G swollen in mineral oil. The experiments support the model well.  相似文献   

19.
The interpolyelectrolyte complex formation between chitosan and anionic polyacrylic derivatives, bearing sulfonic moieties, as well as the protein adsorption onto the chitosan/polyacrylic complexes were studied by surface plasmon resonance (SPR) optical biosensor. This unique technique allows a real time monitoring of different surface molecular interactions with very high sensitivity. The acrylic macromolecules are two families of copolymers of 2-acrylamido-2-methylpropane sulfonic acid (AMPS) and, respectively, 2-hydroxyethylmethacrylate (HEMA) and N,N'-dimethylacrylamide (DMAA). The complexation process was evaluated through the SPR measurements resulting from the flowing of polyacrylic aqueous solution over the sensor previously coated with chitosan. The SPR was able to differentiate strong ionic bonds from other weak and reversible interactions. By means of the coated sensors (uncomplexed and the whole series of complexed chitosan), SPR cold be used for a simple "in vitro" protein adsorption analysis, by flowing aqueous solutions of albumin and fibrinogen. While both proteins were adsorbed on the uncomplexed chitosan, the complexed coatings exhibited different and very promising behaviors. In particular, they showed no adsorption or only selective adsorption of albumin.  相似文献   

20.
Francisella tularensis are very small, gram-negative bacteria which are capable of infecting a number of mammals. As a highly pathogenic species, it is a potential bioterrorism agent. In this work we demonstrate a fast immunological detection system for whole F. tularensis bacteria. The technique is based on a quartz crystal microbalance with dissipation monitoring (QCMD), which uses sensor chips modified by a specific antibody. This antibody is useful as a capture molecule to capture the lipopolysaccharide structure on the surface of the bacterial cell wall. The QCMD technique is combined with a microfluidic system and allows the label-free online detection of the binding of whole bacteria to the sensor surface in a wide dynamic concentration range. A detection limit of about 4 × 10(3) colony-forming units per milliliter can be obtained. Furthermore, a rather short analysis time and a clear discrimination against other bacteria can be achieved. Additionally, we demonstrate two possibilities for specific and significant signal enhancement by using antibody-functionalized gold nanoparticles or an enzymatic precipitation reaction. These additional steps can be seen as further proof of the specificity and validity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号