首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Helium droplets spanning a wide size range, N(He) = 10(3)-10(10), were formed in a continuous-nozzle beam expansion at different nozzle temperatures and a constant stagnation pressure of 20 bars. The average sizes of the droplets have been obtained by attenuation of the droplet beam through collisions with argon and helium gases at room temperature. The results obtained are in good agreement with previous measurements in the size range N(He) = 10(5)-10(7). Moreover, the measurements give the average sizes in the previously uncharacterized range of very large droplets of 10(7)-10(10) atoms. The droplet sizes and beam flux increase rapidly at nozzle temperatures below 6 K, which is ascribed to the formation of droplets within the nozzle interior. The mass spectra of the droplet beam upon electron impact ionization have also been obtained. The spectra show a large increase in the intensity of the He(4) (+) signal upon increase of the droplet size, an effect which can be used as a secondary size standard in the droplet size range N(He) = 10(4)-10(9) atoms.  相似文献   

2.
Jet-cooled terrylene has been studied in helium buffer gas using a pulsed nozzle by means of laser-induced fluorescence. Fluorescence excitation and two-color depletion experiments (resulting in hole burning spectra) are presented. Analysis of the spectra leads to the conclusion that another excited electronic state is present in the vicinity of the allowed 1B1u state. Assuming (according to previous literature suggestions Karabunarliev, S.; Baumgarten, M.; Müllen, K. J. Phys. Chem. A 1998, 102, 7029) that this dark state is the 21Ag state, we discuss the vibrational structure of the fluorescence excitation spectrum in terms of two manifolds of vibronic states belonging to Sd(21Ag) and S1(1B1u) states. The anomalous shift between excitation and dispersed fluorescence spectra observed earlier for terrylene in a neon matrix is discussed as a consequence of terrylene electronic relaxation to the low-energy dark state.  相似文献   

3.
Employing a two-stage cryogenic buffer gas cell, we produce a cold, hydrodynamically extracted beam of calcium monohydride molecules with a near effusive velocity distribution. Beam dynamics, thermalization and slowing are studied using laser spectroscopy. The key to this hybrid, effusive-like beam source is a "slowing cell" placed immediately after a hydrodynamic, cryogenic source [Patterson et al., J. Chem. Phys., 2007, 126, 154307]. The resulting CaH beams are created in two regimes. In one regime, a modestly boosted beam has a forward velocity of v(f) = 65 m s(-1), a narrow velocity spread, and a flux of 10(9) molecules per pulse. In the other regime, our slowest beam has a forward velocity of v(f) = 40 m s(-1), a longitudinal temperature of 3.6 K, and a flux of 5 × 10(8) molecules per pulse.  相似文献   

4.
The temperature of a sodium fluoride cluster beam produced by laser vaporization is estimated from the rotationally-resolved laser spectroscopy of the Na2 dimer. The cluster beam is obtained by laser vaporization of a sodium rod in a mixture of helium containing a small amount (1%) of SF6. Both rotational and vibrational temperatures (respectively 170 K and 400 K) are much higher than expected from a simple theoretical model of a supersonic beam. These temperatures can be lowered to 70 K and 250 K respectively by cooling the nozzle to liquid nitrogen temperature.  相似文献   

5.
We create and study trans‐Stilbene and Nile Red in a cryogenic (7 K) cell with a low density helium buffer gas. No molecule–helium cluster formation is observed, indicating limited atom–molecule sticking in this system. We place an upper limit of 5 % on the population of clustered He–trans‐Stilbene, consistent with a measured He–molecule collisional residence time of less than 1 μs. With its very low energy torsional modes, trans‐Stilbene is less rigid than any molecule previously buffer‐gas‐cooled into the Kelvin regime. We also report cooling and gas phase visible spectroscopy of Nile Red, a much larger molecule. Our data suggest that buffer gas cooling will be feasible for a variety of small biological molecules.  相似文献   

6.
Argon gas at a high pressure (~80 bar) has been expanded using a miniaturized pulsed valve at room temperature, producing a supersonic beam of cold, large argon droplets. Atoms of silver are subsequently embedded into the droplet using the pick-up technique. The resulting Ag(n)Ar(droplet) distribution was analyzed using multiphoton laser ionization time-of-flight mass spectrometry. Besides bare metal clusters, snowballs of silver monomers and dimers encapsulated in up to 50 argon atoms have been observed. The influence of the solvent on the optical absorption of the solute was studied for embedded Ag(8) using resonant two-photon ionization in the ultraviolet. A redshift and broadening of the Ag(8)Ar(droplet) optical spectrum compared to that measured in pure [Federmann et al., Eur. Phys. J. D 1999, 9, 11] and Ar-doped helium droplets [Diederich et al., J. Chem. Phys.2002, 116, 3263] was observed, which is attributed to the interaction with the larger Ar matrix environment.  相似文献   

7.
We have constructed a stabilized low temperature infrared absorption cell cooled by an open cycle refrigerator, which can run with liquid nitrogen from 250 to 80K or with liquid helium from 80K to a few kelvin. Several CO infrared spectra were recorded at low temperature using a tunable diode laser spectrometer. These spectra were analyzed taking into account the detailed effects of collisions on the line profile when the pressure increases. We also recorded spectra at very low pressure to accurately model the diode laser emission. Spectra of the R(2) line in the fundamental band of 13CO cooled by collisions with helium buffer gas at 10.5K and at pressures near 1 Torr have been recorded. The He-pressure broadening parameter (gamma(0) = 0.3 cm(-1) atm(-1)) has been derived from the simultaneous analysis of four spectra at different pressures.  相似文献   

8.
Summary The PGAA applications can be enhanced by using subthermal neutrons, cold neutrons at university research reactors. Only two cold neutron beam facilities were developed at the U.S. university research reactors, namely at Cornell University and the University of Texas at Austin. Both facilities used mesitylene moderator. The mesitylene moderator in the Cornell Cold Neutron Beam Facility (CNBF) was cooled by a helium cryorefrigerator via copper cold fingers to maintain the moderator below 30 K at full power reactor operation. Texas Cold Neutron Source (TCNS) also uses mesitylene moderator that is cooled by a cryorefrigerator via a neon thermosiphon. The operation of the TCNS is based on a helium cryorefrigerator, which liquefies neon gas in a 3-m long thermosiphon. The thermosiphon cools and maintains mesitylene moderator at about 30 K in a chamber. Neutrons streaming through the mesitylene chamber are moderated and thus reduce their energy to produce a cold neutron distribution.  相似文献   

9.
In a joint experimental and theoretical effort, we have studied dissociative electron attachment (DEA) to the CF3Br molecule at electron energies below 2 eV. Using two variants of the laser photoelectron attachment method with a thermal gas target (T(G) = 300 K), we measured the energy dependent yield for Br- formation over the range E = 3-1200 meV with resolutions of about 3 meV (E < 200 meV) and 35 meV. At the onsets for excitation of one and two quanta for the C-Br stretching mode nu3, downward cusps are detected. With reference to the recommended thermal (300 K) attachment rate coefficient k(A)(CF3Br) = 1.4 x 10(-8) cm3 s(-1), absolute cross sections have been determined for Br- formation. In addition, we studied Br- and (CF3Br)Br- formations with a seeded supersonic target beam (10% CF3Br in helium carrier gas, with a stagnation pressure of 1-4 bars and nozzle temperatures of 300 and 600 K) and found prominent structure in the anion yields due to cluster formation. Using the microwave pulse radiolysis swarm technique, allowing for controlled variation of the electron temperature by microwave heating, we studied the dependence of the absolute DEA rate coefficient on the mean electron energy E over the range of 0.04-2 eV at gas temperatures T(G) ranging from 173 to 600 K. For comparison with the experimental results, semiempirical resonance R-matrix calculations have been carried out. The input for the theory includes the known energetic and structural parameters of the neutral molecule and its anion; the parameters of the resonant anion curves are chosen with reference to the known thermal rate coefficient for the DEA process. For the gas temperature T(G) = 300 K, good overall agreement of the theoretical DEA cross section with the experimental results is observed; moreover, rate coefficients for Br- formation due to Rydberg electron transfer, calculated with both the experimental and the theoretical DEA cross sections, are found to agree with the previously reported absolute experimental values. At T(G) = 300 K, satisfactory agreement is also found between the calculated and experimental attachment rate coefficients for mean electron energies E = 0.04-2 eV. The strong increase of the measured rate coefficients with rising gas temperature, however, could be only partially recovered by the R-matrix results. The differences may result from the influence of thermal excitations of other vibrational modes not included in the theory.  相似文献   

10.
A pulse-discharge helium ionisation detector, PDHID (Valco, PD-D2-I) with sample introduced to the discharge zone is shown to be applicable for reliable determinations of neon by gas chromatography. The detection level of 80 pg was obtained, but the dependence between detector response and neon mass was non-linear. However, for the discharge gas doped with 33 ppm of neon, a linear response to the neon mass up to 10(-5) g and the detection level of 0.5 ng were obtained. The method can be used for measuring neon concentrations in groundwater systems for hydrogeological purposes.  相似文献   

11.
In this paper a spectroscopic study of a microwave (2.45 GHz) neon surface-wave sustained discharge (SWD) at atmospheric pressure in a quartz tube has been carried out in order to determine the plasma characteristic parameters (e.g. electron temperature and density, gas temperature, absorbed power per electron) and also to identify possible deviations from the thermodynamic equilibrium for this kind of microwave discharge. The results have been compared to experiments in the literature for other noble gas (helium and argon) SWDs generated under similar experimental conditions. Intermediate values between those of argon and helium plasmas were obtained for characteristic neon plasma parameters (temperatures and electron density). An important departure from the Saha equilibrium was exhibited by neon SWDs.  相似文献   

12.
The equilibrium composition and thermodynamic and transport properties of argon; carbon and helium/carbon mixtures are calculated in the temperature range 300–20,000 K. The curves for the composition of mixtures of 50%, carbon in argon or helium are shown fir a pressure of 1.33 × 104 Pa. The calculations for the heat capacity at constant pressure (Cp) and transport coefficients are validated with other studies, for the cases or pure argon and pure helium at a pressure of 105 Pa. The properties of mixtures with various proportions of carbon in argon and helium are calculated. Results are presented at pressures of 105 and 1.33 × 104 Pa, typical of reactors for the synthesis of fullerenes and nanotubes. It is observed that the properties of carbon and mixtures of carbon with a buffer gas (argon or helium) are very different from those of the buffer gas, thus the need to consider this effect in simulations. In general, the mixtures follow trends intermediate to those of the pure gases from which they are composed except for the thermal conductivity which shows a deviation from this tendency in the region between 11,500 and 19,000 K for argon/carbon mixtures and between 8,000 and 12,000 K for helium/carbon mixtures. Also, the electrical conductivity of mixtures of low carbon concentration is very close to that ofpure carbon. A datafile containing the transport properties of mixtures for pressures between 104 and 105 Pa is available free of charge from the authors.  相似文献   

13.
Infrared (IR) absorption spectroscopy measurements of molecular hydrogen in MOF-74-M (M = metal center) are performed as a function of temperature and pressure [to 45 kTorr (60 bar) at 300 K, and at lower pressures in the 20-200 K range] to investigate the nature of H(2) interactions with the unsaturated metal centers. A small shift (~?-30 cm(-1) with respect to the unperturbed H(2) molecule) is observed for the internal stretch frequency of H(2) molecules adsorbed on the metal site at low loading. This finding is in contrast to much larger shifts (~?-70 cm(-1)) observed in previous studies of MOFs with unsaturated metal centers (including MOF-74) and the general assumption that H(2) stretch shifts depend on adsorption energies (FitzGerald et al., Phys. Rev. B 2010, 81, 104305). We show that larger shifts (~?-70 cm(-1)) do occur, but only when the next available site ("oxygen" site) is occupied. This larger shift originates from H(2)-H(2) interactions on neighboring sites of the same pore, consistent with the short distance between H(2) in these two sites ~2.6 ? derived from an analysis of neutron diffraction experiments of D(2)-D(2) at 4 K (Liu et al., Langmuir 2008, 24, 4772-4777). Our results at 77 K and low loading can be explained by a diffusion barrier against pair disruption, which should be enhanced by this interaction. Calculations indicate that the vibrational shifts do not correlate with binding energies and are instead very sensitive to the environment (interaction potential and H(2)-H(2) interactions), which complicates the use of variable temperature IR methods to calculate adsorption energies of specific adsorption sites.  相似文献   

14.
Rate coefficients were calculated for vibrational relaxation and collision-induced dissociation of ground state xenon fluoride in neon at temperatures between 300 and 1000 K for each of nine vibrational levels. These coefficients were calculated using a pairwise additive potential energy surface, which consists of a Morse function for the XeF interaction and Lennard–Jones functions for the NeXe and NeF interactions. Rate coefficients are provided for both temperature and v- dependences. The vibrational relaxation and dissociation processes occur by multiquanta transitions. Dissociation can take place from all v-levels provided that the internal energy of the XeF molecule is close to the rotationless dissociation limit. The order of increase effectiveness of the various forms of energy in promoting dissociation in XeF was found to be translation–rotation-vibration. At room temperature, neon atoms were found to be more efficient than helium atoms in the dissociation processes; helium atoms were found to be more efficient than neon atoms in the vibrational relaxation of XeF. Strong vibration–rotation coupling in both vibrational relaxation and in the dissociation processes is demonstrated.  相似文献   

15.
The properties of liquid methane, liquid neon, and gas helium are calculated at low temperatures over a large range of pressure from the classical molecular-dynamics simulations. The molecular interactions are represented by the Lennard-Jones pair potentials supplemented by quantum corrections following the Feynman-Hibbs approach. The equations of state, diffusion, and shear viscosity coefficients are determined for neon at 45 K, helium at 80 K, and methane at 110 K. A comparison is made with the existing experimental data and for thermodynamical quantities, with results computed from quantum numerical simulations when they are available. The theoretical variation of the viscosity coefficient with pressure is in good agreement with the experimental data when the quantum corrections are taken into account, thus reducing considerably the 60% discrepancy between the simulations and experiments in the absence of these corrections.  相似文献   

16.
The uptake of gaseous ethanol, 1,1,1-trifluoroethanol, acetone, chloral (CCl(3)CHO), and fluoral (CF(3)CHO) on ice films has been investigated using a coated-wall flow tube at temperatures 208-228 K corresponding to the upper troposphere (UT), with a mass spectrometric measurement of gas concentration. The uptake was largely reversible and followed Langmuir-type kinetic behavior, i.e., surface coverage increased with the trace gas concentration approaching a maximum surface coverage at a gas phase concentration of N(max) ~ (2-4) × 10(14) molecules cm(-3), corresponding to a surface coverage of ~30% of a monolayer (ML). The equilibrium partition coefficients, K(LinC), were obtained from the experimental data by analysis using the simple Langmuir model for specific conditions of temperature and concentration. The analysis showed that the K(LinC) depend only weakly on surface coverages. The following expressions described the temperature dependence of the partition coefficients (K(LinC)) in centimeters, at low coverage for ethanol, trifluoroethanol, acetone, chloral, and fluoral: K(LinC) = 1.36 × 10(-11)?exp(5573.5/T), K(LinC) = 3.74 × 10(-12)?exp(6427/T), K(LinC) = 3.04 × 10(-9)?exp(4625/T), K(LinC) = 7.52 × 10(-4)?exp(2069/T), and K(LinC) = 1.06 × 10(-2)?exp(904/T). For acetone and ethanol the enthalpies and entropies of adsorption derived from all available data showed systematic temperature dependence, which is attributed to temperature dependent surface modifications, e.g., QLL formation. For chloral and fluoral, there was an irreversible component of uptake, which was attributed to hydrate formation on the surface. Rate constants for these surface reactions derived using a Langmuir-Hinshelwood mechanism are reported.  相似文献   

17.
A pulsed laser photolysis-pulsed laser induced fluorescence technique has been employed to study the recombination of mercury and bromine atoms, Hg + Br + M --> HgBr + M (1) and the self-reaction of bromine atoms, Br + Br + M --> Br2 + M (2). Rate coefficients were determined as a function of pressure (200-600 Torr) and temperature (243-293 K) in nitrogen buffer gas and as a function of pressure (200-600 Torr) in helium buffer gas at room temperature. For reaction 1, kinetic measurements were performed under conditions in which bromine atoms were the reactant in excess concentration while simultaneously monitoring the concentration of both mercury and bromine. A temperature dependent expression of (1.46 +/- 0.34) x 10(-32) x (T/298)(-(1.86+/-1.49)) cm6 molecule(-2) s(-1) was determined for the third-order recombination rate coefficient in nitrogen buffer gas. The effective second-order rate coefficient for reaction 1 under atmospheric conditions is a factor of 9 smaller than previously determined in a recently published relative rate study. For reaction 2 we obtain a temperature dependent expression of (4.31 +/- 0.21) x 10(-33) x (T/298)(-(2.77+/-0.30)) cm6 molecule(-2) s(-1) for the third-order recombination rate coefficient in nitrogen buffer gas. The rate coefficients are reported with a 2sigma error of precision only; however, due to the uncertainty in the determination of absolute bromine atom concentrations and other unidentified systematic errors we conservatively estimate an uncertainty of +/-50% in the rate coefficients. For both reactions the observed pressure, temperature and buffer gas dependencies are consistent with the expected behavior for three-body recombination.  相似文献   

18.
The neutral molecule temperature dependence of the rate coefficient for the electron transfer reaction from H(2)O to N(2)(+) is determined using a coaxial molecular beam radio frequency ring electrode ion trap (CoMB-RET) method. The temperature of the N(2)(+) ions was maintained at 100 K, while the effusive water beam temperature was varied from 300 to 450 K. The result demonstrates the neutral molecule rotational/translational energy dependence on the rate coefficient of an ion-dipolar molecule reaction. It is found that the rate coefficient in the above temperature range follows the prediction of the simplest ion-dipole capture model. Use of different buffer gas collisional cooling in both the ion source and the RET reveals the effects of both translational and vibrational energy of the N(2)(+) ions.  相似文献   

19.
We present an ab initio study of cold (4)He + ThO((1)Σ(+)) collisions based on an accurate potential energy surface (PES) evaluated by the coupled cluster method with single, double, and noniterative triple excitations using an extended basis set augmented by bond functions. Variational calculations of rovibrational energy levels show that the (4)He-ThO van der Waals complex has a binding energy of 10.9 cm(-1) in its ground J = 0 rotational state. The calculated energy levels are used to obtain the temperature dependence of the chemical equilibrium constant for the formation of the He-ThO complex. We find that complex formation is thermodynamically favored at temperatures below 1 K and predict the maximum abundance of free ground-state ThO(v = 0, j = 0) molecules between 2 and 3 K. The calculated cross sections for momentum transfer in elastic He + ThO collisions display a rich resonance structure below 5 cm(-1) and decline monotonically above this collision energy. The cross sections for rotational relaxation accompanied by momentum transfer decline abruptly to zero at low collision energies (<0.1 cm(-1)). We find that Stark relaxation in He + ThO collisions can be enhanced by applying an external dc electric field of less than 100 kV∕cm. Finally, we present calculations of thermally averaged diffusion cross sections for ThO in He gas, and find these to be insensitive to small variations of the PES at temperatures above 1 K.  相似文献   

20.
Electric deflection experiments have been performed on neutral Sn(N) clusters (N = 6-20) at different nozzle temperatures in combination with a systematic search for the global minimum structures and the calculation of the dielectric properties based on density functional theory. For smaller tin clusters (N = 6-11), a good agreement between theory and experiment is found. Taking theoretically predicted moments of inertia and the body fixed dipole moment into account permits a quantitative simulation of the deflected molecular beam profiles. For larger Sn(N) clusters (N = 12-20), distinct differences between theory and experiment are observed; i.e., the predicted dipole moments from the quantum chemical calculations are significantly larger than the experimental values. The investigation of the electric susceptibilities at different nozzle temperatures indicates that this is due to the dynamical nature of the tin clusters, which increases with cluster size. As a result, even at the smallest nozzle temperature of 40 K, the dipole moments of Sn(12-20) are partially quenched. This clearly demonstrates the limits of current electric deflection experiments for structural determination and demonstrates the need for stronger cooling of the clusters in future experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号