首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction of the digold(I) diacetylide [(AuCCCH2OC6H4)2CMe2] with diphosphane ligands can lead to formation of either macrocyclic ring complexes or [2]catenanes by self-assembly. This gives an easy route to rare organometallic [2]catenanes, and the effect of the diphosphane ligand on the selectivity of self-assembly is studied. With diphosphane ligands Ph2P(CH2)xPPh2, the simple ring complex [Au2[(CCCH2OC6H4)2CMe2](Ph2P(CH2)xPPh2)] is formed selectively when x = 2, but the [2]catenanes [Au2[(CCCH2OC6H4)2CMe2](Ph2P(CH2)xPPh2)]2 are formed when x = 4 or 5. When x = 3, a mixture of the simple ring and [2]catenane is formed, along with the "double-ring" complex, [Au4[(CCCH2OC6H4)2CMe2]2(Ph2P(CH2)3PPh2)2] and a "hexamer" Au2[(CCCH2OC6H4)2CMe2](Ph2P(CH2)3PPh2)]6] whose structure is not determined. A study of the equilibria between these complexes by solution NMR techniques gives insight into the energetics and mechanism of [2]catenane formation. When the oligomer [(AuCCCH2OC6H4)2CMe2] was treated with a mixture of two diphosphane ligands, or when two [2]catenane complexes [[Au2[(CCCH2OC6H4)2CMe2](diphosphane)]2] were allowed to equilibrate, only the symmetrical [2]catenanes were formed. The diphosphanes Ph2PCCPPh2, trans-[Ph2PCH=CHPPh2] and (Ph2PC5H4)2Fe give the corresponding ring complexes [Au2[(CCCH2OC6H4)2CMe2](diphosphane)], and the chiral, unsymmetrical diacetylide [Au2[(CCCH2OC6H4C(Me)(CH2CMe2)C6H3OCH2CC)] gives macrocyclic ring complexes with all diphosphane ligands Ph2P(CH2)xPPh2 (x = 2-5).  相似文献   

2.
Hao J  Li J  Cui C  Roesky HW 《Inorganic chemistry》2011,50(16):7453-7459
Reaction of the aluminum hydroxide LAl(OH)[C(Ph)CH(Ph)] (1, L = HC[(CMe)(NAr)](2), Ar = 2,6-iPr(2)C(6)H(3)) with Y(CH(2)SiMe(3))(3)(THF)(2) yielded the oxo-bridged heterobimetallic yttrium dialkyl complex LAl[C(Ph)CH(Ph)](μ-O)Y(CH(2)SiMe(3))(2)(THF)(2) (2). Alkane elimination reaction of 2 with 2-(imino)pyrrole [NN]H ([NN]H = 2-(ArN═CH)-5-tBuC(4)H(2)NH) afforded the yttrium monoalkyl complex LAl[C(Ph)CH(Ph)] (μ-O)Y(CH(2)SiMe(3))[NN](THF)(2) (5). Alternatively, 5 can be prepared in high yield by reaction of 1 with [NN]Y(CH(2)SiMe(3))(2)(THF)(2) (3). The analogous samarium alkyl complex LAl[C(Ph)CH(Ph)](μ-O)Sm(CH(2)SiMe(3))[NN](THF)(2) (6) was prepared similarly. Reactions of 5 and 6 with 1 equiv of iPrOH yielded the corresponding alkoxyl complexes 7 and 8, respectively. The molecular structures of 3, 6, and 8 have been determined by X-ray single-crystal analysis. Complexes 2, 3, 5, 7, and 8 have been investigated as lactide polymerization initiators. The heterobimetallic alkoxyl 8 is highly active to yield high molecular weight (M(n) = 6.91 × 10(4)) polylactides with over 91% conversion at the lactide-to-initiator molar ratio of 2000.  相似文献   

3.
A series of iron(II) complexes, trans-[Fe(NCMe)(2)(PR(2)CH(2)CH═NCH(2)CH(2)N═CHCH(2)PR(2))][BPh(4)](2) (5, R = Cy; 7, R = iPr; 9, R = Et) were prepared via the template synthesis in one-pot involving air-stable phosphonium dimers, [cyclo-(-PR(2)CH(2)CH(OH)-)(2)](Br)(2) (4, R = Cy; 6, R = iPr; 8, R = Et), KOtBu, [Fe(H(2)O)(6)][BF(4)](2) and ethylenediamine in acetonitrile. In the synthesis of 9, a methanol/acetonitrile solvent mixture was required; otherwise an intermediate iron bis(tridentate) complex, [Fe(PEt(2)CH(2)CH═NCH(2)CH(2)NH(2))(2)](2+), formed as determined by electrospray ionization mass spectrometry (ESI-MS). The crude iron(II) complexes from a template synthesis with ethylenediamine or (S,S)-1,2-diphenylethylenediamine are stirred in acetone under a CO atmosphere (~2 atm) overnight to displace a NCMe ligand; however, in addition to this, bromide displaces an NCMe ligand as well to form a new class of the iron complexes trans-[Fe(CO)(Br)(PR(2)CH(2)CH═NCHR'CHR'N═CHCH(2)PR(2))](+) (10 R = Cy, R' = H; (S,S)-11, R = Cy, R' = Ph; 12, R = iPr, R' = H; (S,S)-13, R = iPr, R' = Ph; 14, R = Et, R' = H; (S,S)-15, R = Et, R' = Ph). These complexes were isolated in moderate yields (55-84%) as tetraphenylborate salts. Complexes 10-15 were tested for the catalytic transfer hydrogenation of acetophenone in basic iso-propanol at 25 and 50 °C. The complexes 10-13 (where R = Cy or iPr) were inactive while the complexes 14 and (S,S)-15 (where R = Et) were active at 25 °C but had better activity at 50 °C. Complex (S,S)-15 was higher in activity than complex 14, achieving turnover frequencies as high as 4100 h(-1), conversions of acetophenone to (R)-1-phenylethanol as high as 80% and an enantiomeric excess (e.e.) of 50% in the product. As catalysis progressed, the e.e. diminished to as low as 26%.  相似文献   

4.
The design of a synthetic route to a class of enantiomerically pure phosphaalkene-oxazolines (PhAk-Ox) is presented. The condensation of a lithium silylphosphide and a ketone (the phospha-Peterson reaction) was used as the P=C bond-forming step. Attempted condensation of PhC(=O)Ox (Ox = CNOCH(iPr)CH(2)) and MesP(SiMe(3))Li gave the unusual heterocycle (MesP)(2)C(Ph)=CN-(S)-CH(iPr)CH(2)O (3). However, PhAk-Ox (S,E)-MesP=C(Ph)CMe(2)Ox (1?a) was successfully prepared by treating MesP(SiMe(3))Li with PhC(=O)CMe(2)Ox (52?%). To demonstrate the modularity and tunability of the phospha-Peterson synthesis several other phosphaalkene-oxazolines were prepared in an analogous manner to 1?a: TripP=C(Ph)CMe(2)Ox (1?b; Trip = 2,4,6-triisopropylphenyl), 2-iPrC(6)H(4)P=C(Ph)CMe(2)Ox (1?c), 2-tBuC(6)H(4)P=C(Ph)CMe(2)Ox (1?d), MesP=C(4-MeOC(6)H(4))CMe(2)Ox (1?e), MesP=C(Ph)C(CH(2))(4)Ox (1?f), and MesP=C(3,5-(CF(3))(2)C(6)H(3))C(CH(2))(4)Ox (1?g). To evaluate the PhAk-Ox compounds as prospective precursors to chiral phosphine polymers, monomer 1?a and styrene were subjected to radical-initiated copolymerization conditions to afford [{MesPC(Ph)(CMe(2)Ox)}(x){CH(2)CHPh}(y)](n) (9?a: x = 0.13n, y = 0.87n; GPC: M(w) = 7400?g mol(-1) , PDI = 1.15).  相似文献   

5.
Reactions of zirconium dialkyl- or bis(amido)-dichloride complexes "[Zr(CH2SiMe3)2Cl2(Et2O)2]" or [Zr(NMe2)2Cl2(THF)2] with primary alkyl and aryl amines are described. Reaction of "[Zr(CH2SiMe3)2Cl2(Et2O)2]" with RNH2 in THF afforded dimeric [Zr2(mu-NR)2Cl4(THF)4](R=2,6-C6H3iPr2 (1), 2,6-C6H3Me2 (2) or Ph (3)), [Zr2(mu-NR)2Cl4(THF)3](R=tBu (5), iPr (6), CH2Ph (7)), or the "ate" complex [Zr2(mu-NC6F5)2Cl6(THF)2{Li(THF)3}2](4, the LiCl coming from the in situ prepared "[Zr(CH2SiMe3)2Cl2(Et2O)2]"). With [Zr(NMe2)2Cl2(THF)2] the compounds [Zr2(mu-NR)2Cl4(L)x(L')y](R=2,6-C6H3iPr2 (8), 2,6-C6H3Me2 (9), Ph (10) or C6F5 (11); (L)x(L')y=(NHMe2)3(THF), (NHMe2)2(THF)2 or undefined), [Zr2(mu-NtBu)2Cl4(NHMe2)3] (12) and insoluble [Zr(NR)Cl2(NHMe2)]x(R=iPr (13) or CH2Ph (14)) were obtained. Attempts to form monomeric terminal imido compounds by reaction of or with an excess of pyridine led, respectively, to the corresponding dimeric adducts [Zr2(mu-2,6-C6H3Me2)2Cl4(py)4] (15) and [Zr2(mu-NtBu)2Cl4(py)3] (16). The X-ray structures of 1, 2, 4, 8, 12 and 15 have been determined.  相似文献   

6.
A family of cationic, neutral, and anionic bis(imino)pyridine iron alkyl complexes has been prepared, and their electronic and molecular structures have been established by a combination of X-ray diffraction, Mo?ssbauer spectroscopy, magnetochemistry, and open-shell density functional theory. For the cationic complexes, [((iPr)PDI)Fe-R][BPh(4)] ((iPr)PDI = 2,6-(2,6-(i)Pr(2)-C(6)H(3)N═CMe)(2)C(5)H(3)N; R = CH(2)SiMe(3), CH(2)CMe(3), or CH(3)), which are known single-component ethylene polymerization catalysts, the data establish high spin ferrous compounds (S(Fe) = 2) with neutral, redox-innocent bis(imino)pyridine chelates. One-electron reduction to the corresponding neutral alkyls, ((iPr)PDI)Fe(CH(2)SiMe(3)) or ((iPr)PDI)Fe(CH(2)CMe(3)), is chelate-based, resulting in a bis(imino)pyridine radical anion (S(PDI) = 1/2) antiferromagnetically coupled to a high spin ferrous ion (S(Fe) = 2). The neutral neopentyl derivative was reduced by an additional electron and furnished the corresponding anion, [Li(Et(2)O)(3)][((iPr)PDI)Fe(CH(2)CMe(3))N(2)], with concomitant coordination of dinitrogen. The experimental and computational data establish that this S = 0 compound is best described as a low spin ferrous compound (S(Fe) = 0) with a closed-shell singlet bis(imino)pyridine dianion (S(PDI) = 0), demonstrating that the reduction is ligand-based. The change in field strength of the bis(imino)pyridine coupled with the placement of the alkyl ligand into the apical position of the molecule induced a spin state change at the iron center from high to low spin. The relevance of the compounds and their electronic structures to olefin polymerization catalysis is also presented.  相似文献   

7.
The reaction of the functional diphosphine 1 [1 = 2-(bis(diphenylphosphino)methyl-oxazoline] with [PtCl(2)(NCPh)(2)] or [PdCl(2)(NCPh)(2)], in the presence of excess NEt(3), affords [Pt{(Ph(2)P)(2)C···C(···NCH(2)CH(2)O)}(2)] ([Pt(1(-H)-P,P)(2)], 3a) and [Pd{(Ph(2)P)(2)C···C(···NCH(2)CH(2)O)}(2)] ([Pd(1(-H)-P,P)(2)], 3b), respectively, in which 1(-H) is (oxazoline-2-yl)bis(diphenylphosphino)methanide. The reaction of 3b with 2 equiv of [AuCl(tht)] (tht = tetrahydrothiophene) afforded [Pd(1(-H)-P,N)(2)(AuCl)(2)] (4), as a result of the opening of the four-membered metal chelate since ligand 1(-H), which was P,P-chelating in 3b, behaves as a P,N-chelate toward the Pd(II) center in 4 and coordinates to Au(I) through the other P donor. In the absence of a base, the reaction of ligand 1 with [PtCl(2)(NCPh)(2)] in MeCN or CH(2)Cl(2) afforded the isomers [Pt{(Ph(2)P)(2)C═C(OCH(2)CH(2)NH)}(2)]Cl(2) ([Pt(1'-P,P)(2)]Cl(2) (5), 1' = 2-(bis(diphenylphosphino)methylene)-oxazolidine) and [Pt{(Ph(2)P)(2)C═C(OCH(2)CH(2)NH)}{Ph(2)PCH═C(OCH(2)CH(2)N(PPh(2))}]Cl(2) ([Pt(1'-P,P)(2'-P,P)]Cl(2) (6), 2' = (E)-3-(diphenylphosphino)-2-((diphenylphosphino)methylene)oxazolidine]. The P,P-chelating ligands in 5 result from a tautomeric shift of the C-H proton of 1 to the nitrogen atom, whereas the formation of one of the P,P-chelates in 6 involves a carbon to nitrogen phosphoryl migration. The reaction of 5 and 6 with a base occurred by deprotonation at the nitrogen to afford 3a and [Pt{(Ph(2)P)(2)C···C(···NCH(2)CH(2)O)}{Ph(2)PCH═COCH(2)CH(2)N(PPh(2))}]Cl ([Pt(1(-H)-P,P)(2'-P,P)]Cl (7)], respectively. In CH(2)Cl(2), an isomer of 3a, [Pt{Ph(2)P)(2)C···C(···NCH(2)CH(2)O)}{Ph(2)PC(PPh(2))═COCH(2)CH(2)N}] ([Pt(1(-H)-P,P)(1(-H)-P,N)] (8)), was obtained as a side product which contains ligand 1(-H) in two different coordination modes. Complexes 3b·4CH(2)Cl(2), 4·CHCl(3), 6·2.5CH(2)Cl(2), and 8·CH(2)Cl(2) have been structurally characterized by X-ray diffraction.  相似文献   

8.
The iminophosphine-phosphazene [P(III)-P(V)] heterocyclic adduct [IPr·PN(PCl(2)N)(2)] was prepared via reduction of the cyclic phosphazene [Cl(2)PN](3) in the presence of the carbene donor IPr {IPr = [(HCNDipp)(2)C:], where Dipp = 2,6-(i)Pr(2)C(6)H(3)}. By contrast, the treatment of [Cl(2)PN](3) with the N-heterocyclic olefin IPr═CH(2) yielded the olefin-grafted phosphazene ring [(IPr═CH)P(Cl)N(PCl(2)N)(2)].  相似文献   

9.
A series of trimethylamine-thioborane adducts, Me(3)N·BH(2)SR (R = tBu [2a], nBu [2b], iPr [2c], Ph [2d], C(6)F(5) [2e]) have been prepared and characterized. Attempts to access secondary and primary amine adducts of thioboranes via amine-exchange reactions involving these species proved unsuccessful, with the thiolate moiety shown to be vulnerable to displacement by free amine. However, treatment of the arylthioboranes, [BH(2)-SPh](3) (9) and C(6)F(5)SBH(2)·SMe(2) (10) with Me(2)NH and iPr(2)NH successfully yielded the adducts Me(2)NH·BH(2)SR (R = Ph [11a], C(6)F(5) [12a]) and iPr(2)NH·BH(2)SR (R = Ph [11b], C(6)F(5) [12b]) in high yield. These adducts were also shown to be accessible via thermally induced hydrothiolation of the aminoboranes Me(2)N═BH(2), derived from the cyclic dimer [Me(2)N-BH(2)](2) (13), and iPr(2)N═BH(2) (14), respectively. Attempts to prepare the aliphatic thiolate substituted adducts R(2)NH·BH(2)SR' (R = Me, iPr; R' = tBu, nBu, iPr) via this method, however, proved unsuccessful, with the temperatures required to facilitate hydrothiolation also inducing thermal dehydrogenation of the amine-thioborane products to form aminothioboranes, R(2)N═BH(SR'). Thermal and catalytic dehydrogenation of the targeted amine-thioboranes, 11a/11b and 12a/12b were also investigated. Adducts 11b and 12b were cleanly dehydrogenated to yield iPr(2)N═BH(SPh) (22) and iPr(2)N═BH(SC(6)F(5)) (23), respectively, at 100 °C (18 h, toluene), with dehydrogenation also possible at 20 °C (42 h, toluene) with a 2 mol % loading of [Rh(μ-Cl)cod](2) in the case of the former species. Similar studies with adduct 11a evidenced a competitive elimination of H(2) and HSPh upon thermolysis, and other complex reactivity under catalytic conditions, whereas the fluorinated analogue 12a was found to be resistant to dehydrogenation.  相似文献   

10.
Cycloaddition reactions of allenylphosphonates [(RO)(2)P(O)[(R(1))C═C═CR(2)(2)] with dialkyl acetylenedicarboxylates, 1,3-diphenylisobenzofuran, and anthracene have been investigated and compared with those of allenoates [(EtO(2)C)RC═C═CH(2)] and allenylphosphine oxides [Ph(2)P(O)(R(1))C═C═CR(2)(2)] in selected cases. Allenylphosphonates (RO)(2)P(O)(Ar)C═C═CH(2) with an α-aryl group preferentially undergo [4 + 2] cycloaddition with DMAD/DEAD under thermal activation, but in addition to the expected 1:1 (allene: DMAD) product, the reaction also leads to 1:2 as well as 2:1 products that were not reported before. When an extra vinyl group is present at the γ-carbon of allenylphosphonate [e.g., (OCH(2)CMe(2)CH(2)O)P(O)(Ph)C═C═CH(C═CHMe)], [4 + 2] cycloaddition takes place utilizing either the vinylic or the aryl end, but additionally a novel cyclization wherein complete opening of the [β,γ] carbon-carbon double bond of the allene is realized. In contrast to these, the reaction of allenylphosphonate (OCH(2)CMe(2)CH(2)O)P(O)(H)C═C═CMe(2) possessing a terminal ═CMe(2) group with DMAD occurs by both [2 + 2] cycloaddition and ene reaction. While the reaction of ═CH(2) terminal allenylphosphonates as well as allenylphosphine oxides with 1,3-diphenylisobenzofuran afforded preferentially endo-[4 + 2] cycloaddition products via [α,β] attack, the analogous allenoates [(EtO(2)C)RC═C═CH(2)] underwent exo-[4 + 2] cyclization. Under similar conditions, allenylphosphonates with a terminal ═CR(2) group gave only [β,γ]-cycloaddition products. An unusual ring-opening of a [4 + 2] cycloaddition product followed by ring-closing via [4 + 4] cycloaddition, as revealed by (31)P NMR spectroscopy, is reported. Anthracene reacted in a manner similar to 1,3-diphenylisobenzofuran, albeit with lower reactivity. Key products, including a set of exo- and endo- [4 + 2] cycloaddition products, have been characterized by single crystal X-ray crystallography.  相似文献   

11.
Trialkyl imido niobium and tantalum complexes [MR(3)(NtBu)] (M = Nb, R = Me 2, CH(2)CMe(3)3, CH(2)CMe(2)Ph 4, CH(2)SiMe(3)5; M = Ta, R = Me 6, CH(2)CMe(2)Ph 7, CH(2)SiMe(3)8) have been prepared by treatment of solutions containing [MCl(3)(NtBu)py(2)] (M = Nb 1a, Ta 1b) with three equivalents of magnesium reagent. By an unexpected hydrolysis reaction of the tris-trimethylsilylmethyl imido tantalum compound 8a, a μ-oxo derivative [(Me(3)SiCH(2)O)(Me(3)SiCH(2))(3)Ta(μ-O)Ta(CH(2)SiMe(3))(2)(NtBu)] (8a) was formed and its structure was studied by X-ray diffraction methods. Reactions of trialkyl imido compounds with two equivalents of isocyanide 2,6-Me(2)C(6)H(3)NC result in the migration of two alkyl groups, leading to the formation of a series of alkyl imido bisiminoacyl derivatives [MR(NtBu){C(R)NAr}(2)] (Ar = 2,6-Me(2)C(6)H(3); M = Nb, R = Me 9, CH(2)CMe(3)10, CH(2)CMe(2)Ph 11, CH(2)SiMe(3)12, CH(2)Ph 13; M = Ta, R = CH(2)CMe(3)14, CH(2)CMe(2)Ph 15, CH(2)SiMe(3)16). All compounds were studied by IR and NMR ((1)H, (13)C and (15)N) spectroscopy.  相似文献   

12.
Novel asymmetrically substituted azadithiolate compounds [Fe2(CO)4(kappa2-dppe){micro-SCH2N(R)CH2S}] (R=iPr, 1a; CH2CH2OCH3, 1b; CH2C6H5, 1c) have been synthesized by treatment of [Fe2(CO)6(micro-adt)] [adt=SCH2N(R)CH2S, with R=iPr, CH2CH2OCH3, CH2C6H5] with dppe (dppe=Ph2PCH2CH2PPh2) in refluxing toluene in the presence of Me3NO. 1a-c have been characterized by single-crystal X-ray diffraction analyses. The electrochemical investigation of 1a-c and of [Fe2(CO)4(kappa2-dppe)(micro-pdt)] (1d) [pdt=S(CH2)3S] in MeCN- and THF-[NBu4][PF6] has demonstrated that the electrochemical reduction of 1a-d gives rise to an Electron-transfer-catalyzed (ETC) isomerization to the symmetrical isomers 2a-d where the dppe ligand bridges the iron centers. Compounds 2a-d were characterized by IR and NMR spectroscopy, elemental analysis, and X-ray crystallography for 2a.  相似文献   

13.
Daida EJ  Peters JC 《Inorganic chemistry》2004,43(23):7474-7485
Several coordinatively unsaturated pseudotetrahedral iron(II) precursors, [PhBP(iPr)(3)]Fe-R ([PhBP(iPr)(3)] = [PhB(CH(2)P(i)Pr(2))(3)](-); R = Me (2), R = CH(2)Ph (3), R = CH(2)CMe(3) (4)) have been prepared from [PhBP(iPr)(3)]FeCl (1) that serve as precatalysts for the room-temperature hydrogenation of unsaturated hydrocarbons (e.g., ethylene, styrene, 2-pentyne) under atmospheric H(2) pressure. The solid-state crystal structures of 2 and 3 are presented. To gain mechanistic insight into the nature of these hydrogenation reactions, a number of [PhBP(iPr)(3)]-supported iron hydrides were prepared and studied. Room-temperature hydrogenation of alkyls 2-4 in the presence of a trapping phosphine ligand affords the iron(IV) trihydride species [PhBP(iPr)(3)]Fe(H)(3)(PR(3)) (PR(3) = PMe(3) (5); PR(3) = PEt(3) (6); PR(3) = PMePh(2) (7)). These spectroscopically well-defined trihydrides undergo hydrogen loss to varying degrees in solution, and for the case of 7, this process leads to the structurally identified Fe(II) hydride product [PhBP(iPr)(3)]Fe(H)(PMePh(2)) (9). Attempts to prepare 9 by addition of LiEt(3)BH to 1 instead lead to the Fe(I) reduction product [PhBP(iPr)(3)]Fe(PMePh(2)) (10). The independent preparations of the Fe(II) monohydride complex [PhBP(iPr)(3)]Fe(II)(H)(PMe(3)) (11) and the Fe(I) phosphine adduct [PhBP(iPr)(3)]Fe(PMe(3)) (8) are described. The solid-state crystal structures of trihydride 5, monohydride 11, and 8 are compared and demonstrate relatively little structural reorganization with respect to the P(3)Fe-P' core motif as a function of the iron center's formal oxidation state. Although paramagnetic 11 (S = 1) is quantitatively converted to the diamagnetic trihydride 5 under H(2), the Fe(I) complex 8 (S = (3)/(2)) is inert toward atmospheric H(2). Complex 10 is likewise inert toward H(2). Trihydrides 5 and 6 also serve as hydrogenation precatalysts, albeit at slower rates than that for the benzyl complex 3 because of a rate-contributing phosphine dependence. That these hydrogenations appear to proceed via well-defined olefin insertion steps into an Fe-H linkage is indicated by the reaction between trihydride 5 and ethylene, which cleanly produces the ethyl complex [PhBP(iPr)(3)]Fe(CH(2)CH(3)) (13) and an equivalent of ethane. Mechanistic issues concerning the overall reaction are described.  相似文献   

14.
Reaction of the proligand Ph2PN(SiMe3)2 (L1) with WCl6 gives the oligomeric phosphazene complex [WCl4(NPPh2)]n, 1 and subsequent reaction with PMe2Ph or NBu4Cl gives [WCl4(NPPh2)(PMe2Ph)] (2) or [WCl5(NPPh2)][NBu4] (3), respectively. DF calculations on [WCl5(NPPh2)][NBu4] show a W=N double bond (1.756 A) and a P-N bond distance of 1.701 A, which combined with the geometry about the P atom suggests, there is no P-N multiple bonding. Reaction of L1 with [ReOX3(PPh3)2] in MeCN (X = Cl or Br) gives [ReX2(NC(CH3)P(O)Ph2)(MeCN)(PPh3)](X = Cl, 4, X = Br, 5) which contains the new phosphorylketimido ligand. It is bound to the rhenium centre with a virtually linear Re-N-C arrangement (Re-N-C angle = 176.6 degrees, when X = Cl) and there is multiple bonding between Re and N (Re-N = 1.809(7) A when X = Cl). The proligand Ph2PNHNMe2(L2H) reacts with [(C5H5)TiCl3] to give [(C5H5)TiCl2(Me2NNPPh2)] (6). An X-ray crystal structure of the complex shows the ligand (L2) is bound by both nitrogen atoms. Reaction of the proligands Ph2PNHNR2[R2 = Me2 (L2H), -(CH2CH2)2NCH3 (L3H), (CH2CH2)2CH2 (L4H)] with [{RuCl(mu-Cl)(eta6-p-MeC6H4iPr)}2] gave [RuCl2(eta6-p-MeC6H4iPr)L] {L = L2H (7), L3H (8), L4H (9)}. The X-ray crystal structures of 7-9 confirmed that the phosphinohydrazine ligand is neutral and bound via the phosphorus only. Reaction of complexes 7-9 with AgBF4 resulted in chloride ion abstraction and the formation of the cationic species [RuCl(6-p-MeC6H4iPr)(L)]+ BF4- {(L = L2H (10), L3H (11), L4H (12)}. Finally, reaction of complex 6 with [{RuCl(mu-Cl)(eta6-p-MeC6H4iPr)}2] gave the binuclear species [(eta6-p-MeC6H4iPr)Cl2Ru(mu2,eta3-Ph2PNNMe2)TiCl2(C5H5)], 13.  相似文献   

15.
Wang LS  Sheng TL  Wang X  Chen DB  Hu SM  Fu RB  Xiang SC  Wu XT 《Inorganic chemistry》2008,47(10):4054-4059
Through the use of (Bu4N)2[Sn3S4(edt)3] (edt=SCH2CH2S(2-)) and Sn(SPh)4 as metalloligands, three neutral compounds have been obtained: [(Ph3P) 2Cu] 2SnS(edt)(2).2CH2Cl2.H2O (1a), [(Ph3P) 2Cu]2SnS(edt)2.2DMF.H2O (1b), and [(Ph3P)Cu] 2Sn(SPh)(6).3H 2O (2). Single-crystal X-ray diffraction studies revealed that compounds 1a and 1b contain the same neutral butterfly-like [(Ph3P)2Cu]2SnS(edt)2 cluster, which consists of one central SnS 5 dreich trigonal bipyramid sharing one vertex and two sides with two slightly distorted CuS 2P2 tetrahedrons. Compound 2 has a linear [(Ph3P)Cu]2Sn(SPh)6 cluster that is composed of a central distorted SnS 6 octahedron sharing two opposite planes with two slightly distorted CuS 3P tetrahedrons. Compound 1a exhibited an emission at 568 nm (tau=12.86 micros) in the solid state, while in CH 2Cl 2 solution, 1a exhibited a green emission at 534 nm (tau=4.75 micros). Compound 2 showed an intense red emission at 696 nm (tau=3.64 micros) upon excitation at 307 nm in the solid state.  相似文献   

16.
The two-electron reduction chemistry of the aryl-substituted bis(aldimino)pyridine iron dibromide, ((iPr)PDAI)FeBr(2) ((iPr)PDAI = 2,6-(2,6-(i)Pr(2)-C(6)H(3)-N═CH)(2)C(5)H(3)N), was explored with the goal of generating catalytically active iron compounds and comparing the electronic structure of the resulting compounds to the more well studied ketimine derivatives. Reduction of ((iPr)PDAI)FeBr(2) with excess 0.5% Na(Hg) in toluene solution under an N(2) atmosphere furnished the η(6)-arene complex, ((iPr)PDAI)Fe(η(6)-C(7)H(8)) rather than a dinitrogen derivative. Over time in pentane or diethyl ether solution, ((iPr)PDAI)Fe(η(6)-C(7)H(8)) underwent loss of arene and furnished the dimeric iron compound, [((iPr)PDAI)Fe](2). Crystallographic characterization established a diiron compound bridged through an η(2)-π interaction with an imine arm on an adjacent chelate. Superconducting quantum interference device (SQUID) magnetometry established two high spin ferrous centers each coupled to a triplet dianionic bis(aldimino)pyridine chelate. The data were modeled with two strongly antiferromagnetically coupled, high spin iron(II) centers each with an S = 1 [PDAI](2-) chelate. Two electron reduction of ((iPr)PDAI)FeBr(2) in the presence of 1,3-butadiene furnished ((iPr)PDAI)Fe(η(4)-C(4)H(6)), which serves as a precatalyst for olefin hydrogenation with modest turnover frequencies and catalyst lifetimes. Substitution of the trans-coordinated 1,3-butadiene ligand was accomplished with carbon monoxide and N,N-4-dimethylaminopyridine (DMAP) and furnished ((iPr)PDAI)Fe(CO)(2) and ((iPr)PDAI)Fe(DMAP), respectively. The molecular and electronic structures of these compounds were established by X-ray diffraction, NMR and Mo?ssbauer spectroscopy, and the results compared to the previously studied ketimine variants.  相似文献   

17.
The reaction of the potassium beta-diiminate KL (L = [{N(Ar)C(H)}(2)CPh](-); Ar = C(6)H(3)Pr(i)(2)-2,6) with PI(3) unexpectedly produced a phosphenium salt of the intermolecularly C,C-coupled ligand [P(I){N(Ar)CH}(2)C(C(6)H(4)-4)C(Ph)(CH[double bond, length as m-dash]NAr)(2)](+)[I(3)](-), while an intramolecularly N,N-coupled salt [N[upper bond 1 start](Ar)C(H)C(Ph)C(H)N[upper bond 1 end](Ar)](+)[I(5)](-) was isolated from KL + I(2).  相似文献   

18.
In the exploration of sulfur-delivery reagents useful for synthesizing models of the tetracopper-sulfide cluster of nitrous oxide reductase, reactions of Ph(3)Sb═S with Cu(I) complexes of N,N,N',N'-tetramethyl-2R,3R-cyclohexanediamine (TMCHD) and 1,4,7-trialkyltriazacyclononanes (R(3)tacn; R = Me, Et, iPr) were studied. Treatment of [(R(3)tacn)Cu(NCCH(3))]SbF(6) (R = Me, Et, or iPr) with 1 equiv of S═SbPh(3) in CH(2)Cl(2) yielded adducts [(R(3)tacn)Cu(S═SbPh(3))]SbF(6) (1-3), which were fully characterized, including by X-ray crystallography. The adducts slowly decayed to [(R(3)tacn)(2)Cu(2)(μ-η(2):η(2)-S(2))](2+) species (4-6) and SbPh(3), or more quickly in the presence of additional [(R(3)tacn)Cu(NCCH(3))]SbF(6) to 4-6 and [(R(3)tacn)Cu(SbPh(3))]SbF(6) (7-9). The results of mechanistic studies of the latter process were consistent with rapid intermolecular exchange of S═SbPh(3) between 1-3 and added [(R(3)tacn)Cu(NCCH(3))]SbF(6), followed by conversion to product via a dicopper intermediate formed in a rapid pre-equilibrium step. Key evidence supporting this step came from the observation of saturation behavior in a plot of the initial rate of loss of 1 versus the initial concentration of [(Me(3)tacn)Cu(NCCH(3))]SbF(6). Also, treatment of [(TMCHD)Cu(CH(3)CN)]PF(6) with S═SbPh(3) led to the known tricopper cluster [(TMCHD)(3)Cu(3)(μ(3)-S)(2)](PF(6))(3) in good yield (79%), a synthetic procedure superior to that previously reported (Brown, E. C.; York, J. T.; Antholine, W. E.; Ruiz, E.; Alvarez, S.; Tolman, W. B. J. Am. Chem. Soc. 2005, 127, 13752-13753).  相似文献   

19.
The carbophosphazene and cyclophosphazene hydrazides, [{NC(N(CH(3))(2))}(2){NP{N(CH(3))NH(2)}(2)}] (1) and [N(3)P(3)(O(2)C(12)H(8))(2){N(CH(3))NH(2)}(2)] were condensed with o-vanillin to afford the multisite coordination ligands [{NC(N(CH(3))(2))}(2){NP{N(CH(3))N═CH-C(6)H(3)-(o-OH)(m-OCH(3))}(2)}] (2) and [{N(2)P(2)(O(2)C(12)H(8))(2)}{NP{N(CH(3))N═CH-C (6)H(3)-(o-OH)(m-OCH(3))}(2)}] (3), respectively. These ligands were used for the preparation of heterometallic complexes [{NC(N(CH(3))(2))}(2){NP{N(CH(3))N═CH-C(6)H(3)-(o-O)(m-OCH(3))}(2)}{CuCa(NO(3))(2)}] (4), [{NC(N(CH(3))(2))}(2){NP{N(CH(3))N═CH-C(6)H(3)-(o-O)(m-OCH(3))}(2)}{Cu(2)Ca(2)(NO(3))(4)}]·4H(2)O (5), [{NC(N(CH(3))(2))}(2){NP{N(CH(3))N═CH-C(6)H(3)-(o-O)(m-OCH(3))}(2)}{CuDy(NO(3))(4)}]·CH(3)COCH(3) (6), [{NP(O(2)C(12)H(8))}(2){NP{N(CH(3))N═CH-C(6)H(3)-(o-O)(m-OCH(3))}(2)}{CuDy(NO(3))(3)}] (7), and [{NP(O(2)C(12)H(8))}(2){NP{N(CH(3))N═CH-C(6)H(3)-(o-O)(m-OCH(3))}(2)}{CuTb(NO(3))(3)}] (8). The molecular structures of these compounds reveals that the ligands 2 and 3 possess dual coordination pockets which are used to specifically bind the transition metal ion and the alkaline earth/lanthanide metal ion; the Cu(2+)/Ca(2+), Cu(2+)/Tb(3+), and Cu(2+)/Dy(3+) pairs in these compounds are brought together by phenoxide and methoxy oxygen atoms. While 4, 6, 7, and 8 are dinuclear complexes, 5 is a tetranuclear complex. Detailed magnetic properties on 6-8 reveal that these compounds show weak couplings between the magnetic centers and magnetic anisotropy. However, the ac susceptibility experiments did not reveal any out of phase signal suggesting that in these compounds slow relaxation of magnetization is absent above 1.8 K.  相似文献   

20.
The nucleophilic addition of amidoximes R'C(NH(2))═NOH [R' = Me (2.Me), Ph (2.Ph)] to coordinated nitriles in the platinum(II) complexes trans-[PtCl(2)(RCN)(2)] [R = Et (1t.Et), Ph (1t.Ph), NMe(2) (1t.NMe(2))] and cis-[PtCl(2)(RCN)(2)] [R = Et (1c.Et), Ph (1c.Ph), NMe(2) (1c.NMe(2))] proceeds in a 1:1 molar ratio and leads to the monoaddition products trans-[PtCl(RCN){HN═C(R)ONC(R')NH(2)}]Cl [R = NMe(2); R' = Me ([3a]Cl), Ph ([3b]Cl)], cis-[PtCl(2){HN═C(R)ONC(R')NH(2)}] [R = NMe(2); R' = Me (4a), Ph (4b)], and trans/cis-[PtCl(2)(RCN){HN═C(R)ONC(R')NH(2)}] [R = Et; R' = Me (5a, 6a), Ph (5b, 6b); R = Ph; R' = Me (5c, 6c), Ph (5d, 6d), correspondingly]. If the nucleophilic addition proceeds in a 2:1 molar ratio, the reaction gives the bisaddition species trans/cis-[Pt{HN═C(R)ONC(R')NH(2)}(2)]Cl(2) [R = NMe(2); R' = Me ([7a]Cl(2), [8a]Cl(2)), Ph ([7b]Cl(2), [8b]Cl(2))] and trans/cis-[PtCl(2){HN═C(R)ONC(R')NH(2)}(2)] [R = Et; R' = Me (10a), Ph (9b, 10b); R = Ph; R' = Me (9c, 10c), Ph (9d, 10d), respectively]. The reaction of 1 equiv of the corresponding amidoxime and each of [3a]Cl, [3b]Cl, 5b-5d, and 6a-6d leads to [7a]Cl(2), [7b]Cl(2), 9b-9d, and 10a-10d. Open-chain bisaddition species 9b-9d and 10a-10d were transformed to corresponding chelated bisaddition complexes [7d](2+)-[7f](2+) and [8c](2+)-[8f](2+) by the addition of 2 equiv AgNO(3). All of the complexes synthesized bear nitrogen-bound O-iminoacylated amidoxime groups. The obtained complexes were characterized by elemental analyses, high-resolution ESI-MS, IR, and (1)H NMR techniques, while 4a, 4b, 5b, 6d, [7b](Cl)(2), [7d](SO(3)CF(3))(2), [8b](Cl)(2), [8f](NO(3))(2), 9b, and 10b were also characterized by single-crystal X-ray diffraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号