首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photorelease of caged compounds is among the most powerful experimental approaches for studying cellular functions on fast timescales. However, its full potential has yet to be exploited, as the number of caged small molecules available for cell biological studies has been limited by synthetic challenges. Addressing this problem, a straightforward, one-step procedure for efficiently synthesizing caged compounds was developed. An in situ generated benzylic coumarin triflate reagent was used to specifically functionalize carboxylate and phosphate moieties in the presence of free hydroxy groups, generating various caged lipid metabolites, including a number of GPCR ligands. By combining the photo-caged ligands with the respective receptors, an easily implementable experimental platform for the optical control and analysis of GPCR-mediated signal transduction in living cells was developed. Ultimately, the described synthetic strategy allows rapid generation of photo-caged small molecules and thus greatly facilitates the analysis of their biological roles in live cell microscopy assays.  相似文献   

2.
Bacterial genome sequencing projects routinely uncover gene clusters that are predicted to encode the biosynthesis of uncharacterized small molecules. A subset of these cryptic genetic elements appears as individual operons. Here we investigate potential single-operon biosynthetic systems found in the genome of the pathogenic bacterium Burkholderia pseudomallei . Placing these operons under the control of an inducible promoter led to the production of seven new metabolites. Among the molecules we identified are inhibitors of type-4 phosphodiesterases, suggesting that previously cryptic biosynthetic operons may encode metabolites that could contribute to microbial virulence by disrupting host signaling pathways.  相似文献   

3.
MicroRNAs (miRNAs) are small non-coding RNA molecules of 22 nucleotides in length that have been characterized as regulators of messenger RNA (mRNA) regulating a number of developmental processes in plants and animals by silencing genes using multiple mechanisms. miRNAs have been extensively studied in various plant species; however, few information are available about miRNAs in perennial ryegrass, animal feed, and industrial raw materials. In this study, the 12 potential perennial ryegrass miRNAs were identified for the first time by computational approach. Using the newly identified miRNA sequences, the perennial ryegrass mRNA database was further used for BLAST search and detected 33 potential targets of miRNAs. Prediction of potential miRNA target genes revealed their functions involved in various important plant biological processes. Our result should be useful for further investigation into the biological functions of miRNAs in perennial ryegrass. The selected miRNAs representing four families were verified by RT-PCR experiment, indicating that the prediction method that we used to identify the miRNAs was effective.  相似文献   

4.
Mycothiol is an abundant small molecular weight thiol found only in actinomycetes, which include mycobacteria. Mycothiol biosynthetic and detoxification enzymes are novel and unique to actinomycetes, thereby representing potential antimycobacterial targets. To better guide inhibitor design, we have determined by NMR the solution conformations of mycothiol bimane (MSmB) and the pseudodisaccharide 1-D-GlcNAc-alpha-(1 --> 1)-D-myo-Ins (D-GI), molecules that represent the natural substrates for the mycothiol-dependent detoxification enzyme mycothiol-S-conjugate amidase (MCA) and the mycothiol biosynthetic enzyme D-GlcNAc-alpha-(1 --> 1)-D-myo-Ins deacetylase (AcGI deacetylase), respectively. Comparison of the mean structure of MSmB and the energy-minimized structures of two competitive spiroisoxazoline-containing MCA inhibitors shows striking similarities between these molecules in the region of the scissile amide bond of MSmB and provides structural evidence that those inhibitors are substrate mimics. Owing to our earlier finding that AcGI deacetylase will not deacetylate the unnatural isomer 1-d-GlcNAc-alpha-(1 --> 1)-L-myo-Ins (L-GI), the solution conformation of L-GI was also determined. The interglycosidic bond angles for all three compounds are comparable. When considered together with the observation that a simplified cyclohexyl thioglycoside mycothiol analogue is a good substrate for MCA, it appears that the stereochemistry of the inositol ring is critical for deacetylase function, superceding the importance of the full complement of hydroxyl groups on the "nonreducing" ring.  相似文献   

5.

Background

In drug discovery research, cell-based phenotypic screening is an essential method for obtaining potential drug candidates. Revealing the mechanism of action is a key step on the path to drug discovery. However, elucidating the target molecules of hit compounds from phenotypic screening campaigns remains a difficult and troublesome process. Simple and efficient methods for identifying the target molecules are essential.

Results

2-Amino-4-(3,4-(methylenedioxy)benzylamino)-6-(3-methoxyphenyl)pyrimidine (AMBMP) was identified as a senescence inducer from a phenotypic screening campaign. The compound is widely used as a Wnt agonist, although its target molecules remain to be clarified. To identify its target proteins, we compared a series of cellular assay results for the compound with our pathway profiling database. The database comprises the activities of compounds from simple assays of cellular reporter genes and cellular proliferations. In this database, compounds were classified on the basis of statistical analysis of their activities, which corresponded to a mechanism of action by the representative compounds. In addition, the mechanisms of action of the compounds of interest could be predicted using the database. Based on our database analysis, the compound was anticipated to be a tubulin disruptor, which was subsequently confirmed by its inhibitory activity of tubulin polymerization.

Conclusion

These results demonstrate that tubulin is identified for the first time as a target molecule of the Wnt-activating small molecule and that this might have misled the conclusions of some previous studies. Moreover, the present study also emphasizes that our pathway profiling database is a simple and potent tool for revealing the mechanisms of action of hit compounds obtained from phenotypic screenings and off targets of chemical probes.
  相似文献   

6.
Fragment-based screening is an emerging technology which is used as an alternative to high-throughput screening (HTS), and often in parallel. Fragment screening focuses on very small compounds. Because of their small size and simplicity, fragments exhibit a low to medium binding affinity (mM to μM) and must therefore be screened at high concentration in order to detect binding events. Since some issues are associated with high-concentration screening in biochemical assays, biophysical methods are generally employed in fragment screening campaigns. Moreover, these techniques are very sensitive and some of them can give precise information about the binding mode of fragments, which facilitates the mandatory hit-to-lead optimization. One of the main advantages of fragment-based screening is that fragment hits generally exhibit a strong binding with respect to their size, and their subsequent optimization should lead to compounds with better pharmacokinetic properties compared to molecules evolved from HTS hits. In other words, fragments are interesting starting points for drug discovery projects. Besides, the chemical space of low-complexity compounds is very limited in comparison to that of drug-like molecules, and thus easier to explore with a screening library of limited size. Furthermore, the "combinatorial explosion" effect ensures that the resulting combinations of interlinked binding fragments may cover a significant part of "drug-like" chemical space. In parallel to experimental screening, virtual screening techniques, dedicated to fragments or wider compounds, are gaining momentum in order to further reduce the number of compounds to test. This article is a review of the latest news in both experimental and in silico virtual screening in the fragment-based discovery field. Given the specificity of this journal, special attention will be given to fragment library design.  相似文献   

7.
The development of new catalytic methods to functionalize carbon-hydrogen (C-H) bonds continues to progress at a rapid pace due to the significant economic and environmental benefits of these transformations over traditional synthetic methods. In nature, enzymes catalyze regio- and stereoselective C-H bond functionalization using transformations ranging from hydroxylation to hydroalkylation under ambient reaction conditions. The efficiency of these enzymes relative to analogous chemical processes has led to their increased use as biocatalysts in preparative and industrial applications. Furthermore, unlike small molecule catalysts, enzymes can be systematically optimized via directed evolution for a particular application and can be expressed in vivo to augment the biosynthetic capability of living organisms. While a variety of technical challenges must still be overcome for practical application of many enzymes for C-H bond functionalization, continued research on natural enzymes and on novel artificial metalloenzymes will lead to improved synthetic processes for efficient synthesis of complex molecules. In this critical review, we discuss the most prevalent mechanistic strategies used by enzymes to functionalize non-acidic C-H bonds, the application and evolution of these enzymes for chemical synthesis, and a number of potential biosynthetic capabilities uniquely enabled by these powerful catalysts (110 references).  相似文献   

8.
Drug resistance is a significant obstacle in the effective treatment of diseases with rapidly mutating targets, such as AIDS, malaria, and certain forms of cancer. Such targets are remarkably efficient at exploring the space of functional mutants and at evolving to evade drug binding while still maintaining their biological role. To overcome this challenge, drug regimens must be active against potential target variants. Such a goal may be accomplished by one drug molecule that recognizes multiple variants or by a drug "cocktail"--a small collection of drug molecules that collectively binds all desired variants. Ideally, one wants the smallest cocktail possible due to the potential for increased toxicity with each additional drug. Therefore, the task of designing a regimen for multiple target variants can be framed as an optimization problem--find the smallest collection of molecules that together "covers" the relevant target variants. In this work, we formulate and apply this optimization framework to theoretical model target ensembles. These results are analyzed to develop an understanding of how the physical properties of a target ensemble relate to the properties of the optimal cocktail. We focus on electrostatic variation within target ensembles, as it is one important mechanism by which drug resistance is achieved. Using integer programming, we systematically designed optimal cocktails to cover model target ensembles. We found that certain drug molecules covered much larger regions of target space than others, a phenomenon explained by theory grounded in continuum electrostatics. Molecules within optimal cocktails were often dissimilar, such that each drug was responsible for binding variants with a certain electrostatic property in common. On average, the number of molecules in the optimal cocktails correlated with the number of variants, the differences in the variants' electrostatic properties at the binding interface, and the level of binding affinity required. We also treated cases in which a subset of target variants was to be avoided, modeling the common challenge of closely related host molecules that may be implicated in drug toxicity. Such decoys generally increased the size of the required cocktail and more often resulted in infeasible optimizations. Taken together, this work provides practical optimization methods for the design of drug cocktails and a theoretical, physics-based framework through which useful insights can be achieved.  相似文献   

9.
Inhibition of amyloid fibril formation could benefit patients with systemic amyloidosis. In this group of diseases, deposition of amyloid fibrils derived from normally soluble proteins leads to progressive tissue damage and organ failure. Amyloid formation is a complex process, where several individual steps could be targeted. Several small molecules have been proposed as inhibitors of amyloid formation. However, the exact mechanism of action for a molecule is often not known, which impedes medicinal chemistry efforts to develop more potent molecules. Furthermore, commonly used assays are prone to artifacts that must be controlled for. Here, potential mechanisms by which small molecules could inhibit aggregation of immunoglobulin light-chain dimers, the precursor proteins for amyloid light-chain (AL) amyloidosis, are studied in assays that recapitulate different aspects of amyloidogenesis in vitro. One molecule reduced unfolding-coupled proteolysis of light chains, but no molecules inhibited aggregation of light chains or disrupted pre-formed amyloid fibrils. This work demonstrates the challenges associated with drug development for amyloidosis, but also highlights the potential to combine therapies that target different aspects of amyloidosis.  相似文献   

10.
The development of a linear-scaling method, viz. "molecular tailoring approach" with an emphasis on accurate computation of one-electron properties of large molecules is reported. This method is based on fragmenting the reference macromolecule into a number of small, overlapping molecules of similar size. The density matrix (DM) of the parent molecule is synthesized from the individual fragment DMs, computed separately at the Hartree-Fock (HF) level, and is used for property evaluation. In effect, this method reduces the O(N(3)) scaling order within HF theory to an n.O(N'(3)) one, where n is the number of fragments and N', the average number of basis functions in the fragment molecules. An algorithm and a program in FORTRAN 90 have been developed for an automated fragmentation of large molecular systems. One-electron properties such as the molecular electrostatic potential, molecular electron density along with their topography, as well as the dipole moment are computed using this approach for medium and large test chemical systems of varying nature (tocopherol, a model polypeptide and a silicious zeolite). The results are compared qualitatively and quantitatively with the corresponding actual ones for some cases. This method is also extended to obtain MP2 level DMs and electronic properties of large systems and found to be equally successful.  相似文献   

11.
12.
13.
BACKGROUND: Fully adapting a forward genetic approach to mammalian systems requires efficient methods to alter systematically gene products without prior knowledge of gene sequences, while allowing for the subsequent characterization of these alterations. Ideally, these methods would also allow function to be altered in a temporally controlled manner. RESULTS: We report the development of a miniaturized cell-based assay format that enables a genetic-like approach to understanding cellular pathways in mammalian systems using small molecules, rather than mutations, as the source of gene-product alterations. This whole-cell immunodetection assay can sensitively detect changes in specific cellular macromolecules in high-density arrays of mammalian cells. Furthermore, it is compatible with screening large numbers of small molecules in nanoliter to microliter culture volumes. We refer to this assay format as a 'cytoblot', and demonstrate the use of cytoblotting to monitor biosynthetic processes such as DNA synthesis, and post-translational processes such as acetylation and phosphorylation. Finally, we demonstrate the applicability of these assays to natural-product screening through the identification of marine sponge extracts exhibiting genotype-specific inhibition of 5-bromodeoxyuridine incorporation and suppression of the anti-proliferative effect of rapamycin. CONCLUSIONS: We show that cytoblots can be used for high-throughput screening of small molecules in cell-based assays. Together with small-molecule libraries, the cytoblot assay can be used to perform chemical genetic screens analogous to those used in classical genetics and thus should be applicable to understanding a wide variety of cellular processes, especially those involving post-transitional modifications.  相似文献   

14.
In this proof-of-principle study, the applicability of electrospray ionization-mass spectrometry (ESI-MS) to characterize the reducing potencies of natural antioxidants is demonstrated. The ESI source represents a controlled-current electrochemical cell. The interfacial potential at the emitter electrode will be at or near the electrochemical potential of those reactions that sufficiently supply all the required current for the ESI circuit. Indicator molecules prone to oxidation in ESI such as amodiaquine were used to visualize the impact of reducing compounds on the interfacial potential. The extent of inhibition of the oxidation of the indicator molecule was found to be dependent on the kind and amount of antioxidant added. Concentration–inhibition curves were constructed and used to compare reducing potencies and to rank antioxidants. This ranking was found to be dependent on the electrode material–indicator molecule combination applied. For fast and automated characterization of the reducing potencies of electrochemically active molecules, a flow-injection system was combined with ESI-MS. Liquid chromatography was used to process complex biological samples, such as red and white wine. Due to their high content of different polyphenols, red wine fractions were found to exhibit higher reducing potencies than the corresponding white wine fractions. Furthermore, for 14 important natural antioxidants, the results obtained with the controlled-current EC–ESI-MS assay were compared to those obtained with chemical antioxidant assays. Irrespectively of the kind of assay used to test the reducing potency, gallic acid, quercetin, and epicatechin were found to be potent reductants. Other antioxidants performed well in one particular assay only. This observation suggests that different kinds of redox and antioxidant chemistry were assessed with each of the assays applied. Therefore, several assays should be used to comprehensively study antioxidants and their reducing potencies.
Figure
Fractions of a red wine sample were screened by ESI-MS for compounds showing reducing potency.  相似文献   

15.
Some bacteria swarm under some circumstances; they move rapidly and collectively over a surface. In an effort to understand the molecular signals controlling swarming, we isolated two bacterial strains from the same red seaweed, Vibrio alginolyticus B522, a vigorous swarmer, and Shewanella algae B516, which inhibits V. alginolyticus swarming in its vicinity. Plate assays combined with NMR, MS, and X‐ray diffraction analyses identified a small molecule, which was named avaroferrin, as a potent swarming inhibitor. Avaroferrin, a previously unreported cyclic dihydroxamate siderophore, is a chimera of two well‐known siderophores: putrebactin and bisucaberin. The sequenced genome of S. algae revealed avaroferrin’s biosynthetic gene cluster to be a mashup of putrebactin and bisucaberin biosynthetic genes. Avaroferrin blocks swarming through its ability to bind iron in a form that cannot be pirated by V. alginolyticus, thereby securing this essential resource for its producer.  相似文献   

16.
Functionalization of the surfaces of silica particles is often the first step in their various applications. An improved heterogeneous Fmoc-Cl fluorescent assay using an aqueous solution was developed to detect the number of amino groups on solid-phase supports. The fluorescent Fmoc-Cl method is 50-fold more sensitive than the current UV assay using an organic solvent. This method, together with the homogeneous fluorescamine and OPA assays, is used to detect amino groups on the silica particle surface. The accuracy and effect factors of these methods were examined and the assays were optimized. The results showed that the amine groups on silica particles can produce stronger fluorescence than small amine molecules in solution, because the porous structure of the particle surface is a more hydrophobic environment. The number of active amino groups that can be conjugated with biomolecules is much less than the total number of amino groups on the silica particle. Compared with physical methods, chemical assays involving direct reaction with amino groups would furnish the closest result to the number of active amino groups on the particle surface.  相似文献   

17.
18.
Polyketides are secondary metabolites biosynthesized by the iterative Claisen condensation of malonate units. Despite utilizing only a small set of biochemical transformations, the polyketide biosynthetic machinery yields products of striking structural complexity and diversity. Recently, a new polyketide alkylation pathway was characterized that allows access to "beta-branched" structures. This Highlight will describe this alkylation sequence, with special emphasis on its parallels to isoprenoid biosynthesis from primary metabolism and the scope of structures accessible via this pathway.  相似文献   

19.
We have performed molecular dynamics simulations of protein surface loops solvated by explicit water, where a prime focus of the study is the small numbers (e.g., ~100) of explicit water molecules employed. The models include only part of the protein (typically 500 - 1000 atoms), and the water molecules are restricted to a region surrounding the loop. In this study, the number of water molecules (N(w)) is systematically varied, and convergence with large N(w) is monitored to reveal N(w)(min), the minimum number required for the loop to exhibit realistic (fully hydrated) behavior. We have also studied protein surface coverage, as well as diffusion and residence times for water molecules as a function of N(w). A number of other modeling parameters are also tested. These include the number of environmental protein atoms explicitly considered in the model, as well as two ways to constrain the water molecules to the vicinity of the loop (where we find one of these methods to perform better when N(w) is small). The results (for RMSD and its fluctuations for four loops) are further compared to much larger, fully solvated systems (using ~10,000 water molecules under periodic boundary conditions and Ewald electrostatics), and to results for the GBSA implicit solvation model. We find that the loop backbone can stabilize with a surprisingly small number of water molecules (as low as 5 molecules per amino acid residue). The side chains of the loop require somewhat larger N(w), where the atomic fluctuations become too small if N(w) is further reduced. Thus, in general, we find adequate hydration to occur at roughly 12 water molecules per residue. This is an important result, because at this hydration level, computational times are comparable to those required for GBSA. Therefore these "minimalist explicit models" can provide a viable and potentially more accurate alternative. The importance of protein loop modeling is discussed in the context of these, and other, loop models, along with other challenges including the relevance of appropriate free energy simulation methodology for assessment of conformational stability.  相似文献   

20.
The cyanobactin ribosomal peptide (RP) natural product pathway was manipulated to incorporate multiple tandem mutations and non-proteinogenic amino acids, using eight heterologous components simultaneously expressed in Escherichia coli . These studies reveal the potential of RPs for the rational synthesis of complex, new small molecules over multiple-step biosynthetic pathways using simple genetic engineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号