首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
G. J. Ball 《Shock Waves》1996,5(5):311-325
A Free-Lagrange numerical procedure for the simulation of two-dimensional inviscid compressible flow is described in detail. The unsteady Euler equations are solved on an unstructured Lagrangian grid based on a density-weighted Voronoi mesh. The flow solver is of the Godunov type, utilising either the HLLE (2 wave) approximate Riemann solver or the more recent HLLC (3 wave) variant, each adapted to the Lagrangian frame. Within each mesh cell, conserved properties are treated as piece-wise linear, and a slope limiter of the MUSCL type is used to give non-oscillatory behaviour with nominal second order accuracy in space. The solver is first order accurate in time. Modifications to the slope limiter to minimise grid and coordinate dependent effects are described. The performances of the HLLE and HLLC solvers are compared for two test problems; a one-dimensional shock tube and a two-dimensional blast wave confined within a rigid cylinder. The blast wave is initiated by impulsive heating of a gas column whose centreline is parallel to, and one half of the cylinder radius from, the axis of the cylinder. For the shock tube problem, both solvers predict shock and expansion waves in good agreement with theory. For the HLLE solver, contact resolution is poor, especially in the blast wave problem. The HLLC solver achieves near-exact contact capture in both problems. Received May 25, 1995 / Accepted September 11, 1995  相似文献   

2.
Shock wave attenuation by grids and orifice plates   总被引:2,自引:0,他引:2  
The interaction of weak shock waves with porous barriers of different geometries and porosities is examined. Installing a barrier inside the shock tube test section will cause the development of the following wave pattern upon a head-on collision between the incident shock wave and the barrier: a reflected shock from the barrier and a transmitted shock propagating towards the shock tube end wall. Once the transmitted shock wave reaches the end wall it is reflected back towards the barrier. This is the beginning of multiple reflections between the barrier and the end wall. This full cycle of shock reflections/interactions resulting from the incident shock wave collision with the barrier can be studied in a single shock tube test. A one-dimensional (1D), inviscid flow model was proposed for simulating the flow resulting from the initial collision of the incident shock wave with the barrier. Fairly good agreement is found between experimental findings and simulations based on a 1D flow model. Based on obtained numerical and experimental findings an optimal design procedure for shock wave attenuator is suggested. The suggested attenuator may ensure the safety of the shelter’s ventilation systems.  相似文献   

3.
A numerical study of the interaction of plane blast waves with a cylinder is presented. Computations are carried out for various blast-wave durations and comparisons are obtained with the corresponding results of planar shock-wave. Both inviscid and viscous results based on the solution of the Euler and Navier-Stokes equations are presented. The equations are solved by an adaptive-grid method and a second-order Godunov scheme. The shock wave diffraction over the cylinder is investigated by means of various contour plots, as well as, pressure and skin-friction histories. The study reveals that the blast-wave duration significantly influences the unsteady flow over the cylinder. The differences between the viscous and inviscid results are also discussed. Received 2 March 1996 / Accepted 28 February 1997  相似文献   

4.
On the basis of numerical modeling specific features of shock wave reflections were analyzed. It was found, that after diaphragm rupture self-modeling pressure and velocity distributions nearby the shock front establish. But in some special cases the temperature behind the shock front can rise. This peculiarity should be taken into account when performing experiments with high reactive gaseous mixtures. The temperature on the shock front and the velocity gradient behind it are uniform in the case of strong blast wave reflections. This effect is observed in the zone with an elevated temperature profile behind the incident blast wave. The reflected triangular waves conserve a quasi-self-modeling character by pressure. Typical experiments were carried out to verify the theoretical predictions. The effects of reflected wave acceleration in the case of triangular waves and the self-similar character of the pressure profiles were observed.This article was processed using Springer-Verlag TEX Shock Waves macro package 1.0 and the AMS fonts, developed by the American Mathematical Society.  相似文献   

5.
A simple two-dimensional square cavity model is used to study shock attenuating effects of dust suspension in air. The GRP scheme for compressible flows was extended to simulate the fluid dynamics of dilute dust suspensions, employing the conventional two-phase approximation. A planar shock of constant intensity propagated in pure air over flat ground and diffracted into a square cavity filled with a dusty quiescent suspension. Shock intensities were and , dust loading ratios were and , and particle diameters were and {\rm \mu}$m. It was found that the diffraction patterns in the cavity were decisively attenuated by the dust suspension, particularly for the higher loading ratio. The particle size has a pronounced effect on the flow and wave pattern developed inside the cavity. Wall pressure histories were recorded for each of the three cavity walls, showing a clear attenuating effect of the dust suspension. Received 15 November 1999 / Accepted 25 October 2000  相似文献   

6.
Effects of viscosity and vibrational nonequilibrium on the profile of a weak, spherical N-wave in air are experimentally and numerically studied. Weak blast waves were generated, in a quiescent air dome, by spark discharges and exploding wires and observed by high frequency response microphones over 40 meters. Some similarity relationships were obtained from the blast wave experiments. For observed N-waves having less than 100 Pa peak overpressure, the peak overpressure p f and the duration of the positive phaset d+ are found to vary with the radial distance from the sourcer as p f r –1.38 andt d + r 0.19, whilst the rise time of the blast wave t f linearly increases with distance. Similar trends were also found for the negative phase of the blast wave. Numerical simulations were carried out to compare with the blast wave data. The Navier-Stokes equations for spherical symmetric flows were solved by coupling with a relaxation equation for vibrational excitation of oxygen using the random choice method (RCM) adapted to supercomputing with an operator splitting technique. The resultant N-wave profiles are in good agreement with the experimental results. The numerical results clearly indicate that the wave-easing process due to the dispersive effect of vibrational relaxation plays a dominant role in determining the rise time of the N-wave.This article was processed using Springer-Verlag TEX Shock Waves macro package 1990.  相似文献   

7.
This paper discusses gas-dynamic aspects of intense explosions in uniform environments. In experiments, the energy of a laser is almost instantaneously released in a volume of air shaped as either a flattened or stretched cylinder generating a blast wave. Its shape evolves in time and ultimately becomes spherical. But momentum transferred to the air when the blast wave is strongly nonspherical is anisotropic. As a result, a subsonic jet and a vortex are induced and propagate along the symmetry axis or along the perpendicular plane, depending on the initial configuration of the blast wave. Simulations based on a free-Lagrangian method for a nonviscous gas are in good agreement with the experiments. Velocities, circulation, and positions of fluid particles found in computations give an insight into the causes and details of the flow. Two simultaneous and contrary processes take place – vorticity production by the anisotropic shock wave and baroclinical generation of vorticity at the boundary of the heated gas – which give rise to net circulation. Received 21 April 1997 / Accepted 27 June 1997  相似文献   

8.
Numerical investigations on the launch process of a projectile in a nearly realistic situation have been performed in this article. The Arbitrary Lagrangian–Eulerian (ALE) of Euler equations is solved by the AUSMDV scheme and the dynamic chimera grid technique are used for describing the moving of the projectile. Based on our numerical results, the muzzle blast flow field of the transient launch process of a projectile at a relative high Mach number of 3.0 has been visualized numerically, and the prominent characteristics including the propagation of first and second blast waves, the generation of bow shock wave and moving of the projectile, etc. have been discussed in detail.   相似文献   

9.
Experimental and numerical studies of underwater shock wave attenuation   总被引:3,自引:0,他引:3  
Saito  T.  Marumoto  M.  Yamashita  H.  Hosseini  S.H.R.  Nakagawa  A.  Hirano  T.  Takayama  K. 《Shock Waves》2003,13(2):139-148
The attenuation of an underwater shock wave by a thin porous layer is studied both experimentally and numerically. The shock waves are generated by exploding 10 mg silver azide pellets and the pressures at different distances from the explosion center are measured. Measurements are also carried out with a gauze layer placed between the explosion source and the pressure gauge. The results with and without the gauze layer are compared evaluating the shock wave attenuation. Numerical simulations of the phenomenon are also carried out for a simple wave attenuation model. The results are compared with the experimental data. Despite the simple mathematical model of wave attenuation, the agreement between the experimental and numerical results is reasonable.Received: 22 October 2002, Accepted: 17 June 2003, Published online: 5 August 2003PACS: 47.11.+j, 47.40.Nm, 47.55.Mh  相似文献   

10.
The scaling and similarity laws concerning the propagation of isolated spherical blast waves are briefly reviewed. Both point source explosions and high pressure gas explosions are considered. Test data on blast overpressure from the interaction and coalescence of spherical blast waves emanating from explosives in the form of shaped charges of different strength placed in the vicinity of a solid propellant stack are presented. These data are discussed with regard to the scaling laws concerning the decay of blast overpressure. The results point out the possibility of detecting source explosions from far-field pressure measurements.   相似文献   

11.
An existing constitutive model applicable for aluminum foam was evaluated. The model was implemented in LS-DYNA, and several test cases were analyzed and compared to experimental data. The numerical analyses consisted of foam subjected to both simple and more complex loading conditions where fracture was of varying importance. Therefore, simple fracture criteria were added to the model. Additionally, the inhomogeneities in the foam were modeled by incorporating the possibility of statistical variation of the foam density. The implemented model is efficient and robust, and gives satisfactory results compared with the experimental results.  相似文献   

12.
Particle dispersal by blast waves is an interesting phenomenon. A model problem, i.e., a sudden release of a compressed gas–particle mixture contained in a spherical container, is employed to investigate the fundamental physics of particle dispersal. The problem is simulated by the multiphase flow models proposed in Part 1 of this article that include unsteady contributions in momentum and energy exchange between gas and particles. At early times, when particles are accelerated in the expansion fan, unsteady force and heating contributions are much larger than the corresponding quasi-steady contributions. Consequently, neglecting unsteady contributions leads to significant errors in particle front location (the boundary of the particle cloud). The complex wave interactions in the flow have strong influence on the particle motion. As a result, the particle motion is a non-monotonic function of particle density or diameter and the evolution of particle concentration is non-uniform and unsteady.  相似文献   

13.
针对三维多介质可压缩流体,给出了可压缩多介质流体三维高精度数值计算方法,以及界面捕捉方程和带重新初始化的三维LevelSet方法,对初始压力间断和密度间断条件形成激波、接触间断以及稀疏波的三维复杂流场相互作用情况进行数值计算,给出流场中涡的形成过程和界面位置。并对计算方法进行理论验证。  相似文献   

14.
The objective of this study is to understand the flow structures of weak and strong spherical blast waves either propagating in a free field or interacting with a flat plate. A 5th-order weighted essentially non-oscillatory scheme with a 4th-order Runge-Kutta method is employed to solve the compressible Euler/Navier-Stokes equations in a finite volume approach. The real-gas effects are taken into account when high temperature occurs. A shock-tube problem with the real-gas effect is first tested in order to verify the solver accuracy. Moreover, unsteady shock waves moving over a stationary wedge with various wedge angles, resulting in different types of shock wave reflections, are also tested. It is found that the computed results agreed well with the existing data. Second, the propagation of a weak spherical blast wave, created by rupture of a high-pressure isothermal sphere, in a free field is studied. It is found that there are three minor shock waves moving behind the main shock. Third, the problem of a strong blast wave interacting with a flat plate is investigated. The flow structures associated with single and double Mach reflections are reported in detail. It is found that there are at least three local high-pressure regions near the flat plate. Received 27 July 2000 / Accepted 25 January 2002 – Published online 17 June 2002  相似文献   

15.
The interaction of water waves and seabed is studied by using Yamamoto's model, which takes into account the deformation of soil skeletal frame, compressibility of pore fluid flow as well as the Coulumb friction. When analyzing the propagation of three kinds of stress waves in seabed, a simplified dispersion relation and a specific damping formula are derived. The problem of seabed stability is further treated analytically based on the Mohr-Coulomb theory. The theory is finally applied to the coastal problems in the Lian-Yun Harbour and compared with observations and measurements in soil-wave tank with satisfactory results. The project supported by the National Science Foundation of China  相似文献   

16.
Two experimental setups are used to study propagation and attenuation of blast waves. In the first one, the blast wave is generated by a spherical detonation, and in the second one, the blast wave is created by the diffraction of a planar detonation propagating in a tube. The similarity of these phenomena appears clearly by means of dimensionless space-time and pressure-space diagrams of shock wave propagation. Dimensionless variables are expressed as a function of the supplied energy. Two energy formulations are proposed: a piston model and a bulk energy model. The established diagrams cover a wide range of industrial applications. Under critical conditions, the energy released by a planar detonation is correlated to the ignition source energy supply and a relationship which links the critical radius of detonation to the critical tube diameter. Received 5 July 1997 / Accepted 13 July 1998  相似文献   

17.
Shock wave structure in a bubbly mixture composed of a cluster of gas bubbles in a quiescent liquid with initial void fractions around 10% inside a 3D rectangular domain excited by a sudden increase in the pressure at one boundary is investigated using the front tracking/finite volume method. The effects of bubble/bubble interactions and bubble deformations are, therefore, investigated for further modeling. The liquid is taken to be incompressible while the bubbles are assumed to be compressible. The gas pressure inside the bubbles is taken uniform and is assumed to vary isothermally. Results obtained for the pressure distribution at different locations along the direction of propagation show the characteristics of one-dimensional unsteady shock propagation evolving towards steady-state. The steady-state shock structures obtained by the present direct numerical simulations, which show a transition from A-type to C-type steady-state shock structures, are compared with those obtained by the classical Rayleigh–Plesset equation and by a modified Rayleigh–Plesset equation accounting for bubble/bubble interactions in the mean-field theory.   相似文献   

18.
This paper focuses on the development of an algorithm capable of generating morphologically-representative foam structures using the Representative Volume Element (RVE) approach. Stereology, a sampling method based on direct observations of the foam cross-sections, is used to characterize the pore size and shape distributions. Using the morphology generation algorithm, the smallest RVEs corresponding to the numerically-convergent foam morphologies are calculated for different foam porosities. To validate the foam generation algorithm, the pore size and shape distributions of the numerically-generated foams are compared to those of the titanium foams manufactured by the space holder method.  相似文献   

19.
This paper describes a numerical and experimental study of a micro-blast wave which is produced from the source of several tens microns in dia. and propagates in the length scale of a few centimeter in diameter. The micro-blast wave was generated by focusing a Nd:Glass pulsed-laser beam in ambient air. Its propagation and reflection were visualized by using double exposure holographic interferometry and simulated numerically using the dispersion-controlled scheme to solve the Euler and Navier-Stokes equations with initial conditions of a point-source explosion specified with the Taylor similarity law. Good agreement was obtained between numerical solutions and experimental results, and this spherical micro-blast wave was shown to be a handy model of blast waves created in large scale explosions. Received 28 October 1997 / Accepted 30 April 1998  相似文献   

20.
A. Levy  G. Ben-Dor  S. Sorek 《Shock Waves》1998,8(3):127-137
A numerical parametric study of the flow field which develops when a planar shock wave impinge on a rigid porous material is presented. This study complements an earlier study (Levy et al. 1996a) where the values of some dominating parameters were estimated and the dependence of the resulting flow field on these values was not checked. Received 22 April 1996 / Accepted 5 January 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号