首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
A novel oligonucleotide delivery system that is based on oligonucleotide–nanoparticle conjugates has been described. Installed oligonucleotides were modified with the carbohydrate at the 3′ terminus, accordingly, constructed nanoparticles display clustered carbohydrates on their outer layer for the targeted delivery of oligonucleotides. The method for the construction of ligand-functionalized nanoparticle was simple and reproducible. The stability of the nanoparticles displaying clustered carbohydrates greatly increased in serum compared to nanoparticles without carbohydrates. In order to investigate the targetability of oligonucleotide–nanoparticle conjugates into primary hepatic parenchymal cells, freshly isolated rat hepatocytes were incubated with nanoparticles and the amount of internalized gold nanoparticles was evaluated by an inductively coupled plasma mass spectroscopy analysis. Nanoparticles displaying clustered carbohydrates internalized more efficiently than nanoparticles without carbohydrate modifications. In particular, the cellular uptakes of oligonucleotide-conjugated gold nanoparticle increased 1.7 ~2.0-fold by galactose modification. Competition assay revealed that clustered galactose enhanced the internalization of the nanoparticle into primary hepatic parenchymal cells by a receptor-mediated process.
Figure
A novel oligonucleotide delivery system that is based on oligonucleotide-nanoparticle conjugates has been described. Constructed nanoparticles display clustered carbohydrates on their outer layer. The stability of the nanoparticles displaying clustered carbohydrates increased in serum, and clustered galactose enhanced the internalization of the nanoparticle to hepatic parenchymal cells by a receptor-mediated process  相似文献   

2.
In this study, thioglycolic acid capped-CdTe quantum dots (QDs) were modified by polyethylenimine (PEI), and then combined with fluorescein isothiocyanate (FITC) to fabricate FITC–CdTe conjugates. The self-assembly of FITC, CdTe and PEI was ascribed to electrostatic interactions in aqueous solution. The resulting conjugates were developed toward two routes. In route one, ratiometric photoluminescence (PL) intensity of conjugates (IFITC/IQDs) was almost linear toward pH from 5.3 to 8.7, and a ratiometric PL sensor of pH was favorable obtained. In route two, firstly added S2− induced remarkable quenching of QDs PL peak (at the “OFF” state), which was restored due to following addition of Cd2+ (at the “ON” state). In the conjugates, successive introduction of S2− and Cd2+ hardly influenced on FITC PL peaks. According to this PL “OFF-ON” mode, a ratiometric PL method for the detection of Cd2+ was achieved. Experimental results confirmed that the IFITC/IQDs exhibited near linear proportion toward Cd2+ concentration in the range from 0.1 to 15 μM, and the limit of detection was 12 nM. Interferential experiments adequately testified that the proposed sensors of pH and Cd2+ were practicable in real samples and complex systems. In comparison with conventional analytical techniques, the ratiometric PL method was simple, rapid, economic and highly selective.  相似文献   

3.
The fluorescence of fluoresceinisothiocyanate-labeled concanavalin A (FITC-Con A) was quenched by forming an FITC-Con A–glycogen conjugate and dequenched upon addition of sugars to the conjugate solution due to disaggregation of the conjugate. However, fluorescence quenching was barely observed upon formation of FITC-Con A–dextran conjugate. The sugar-induced fluorescence response of the FITC-Con A–glycogen conjugate depended significantly on the type of sugar: methylated α-D-glucose and α-D-mannose both induced high and rapid responses, while the responses to D-mannose and D-glucose were moderate. In contrast, no response was observed in the presence of D-galactose due to a lack of affinity to Con A. Thus, it is apparent that D-glucose and other sugars can be detected via the fluorescence of the FITC-Con A–glycogen conjugate.   相似文献   

4.
5.
Yttrium-doped ZnO gel was spin-coated on the SiO2/Si substrate. The as-prepared ZnO:Y (YZO) thin films then underwent a rapid thermal annealing (RTA) process conducted at various temperatures. The structural and photoluminescence characteristics of the YZO films were discussed thereafter. Our results indicated that the grain size of YZO thin films being treated with various annealing temperatures became smaller as compared to the ones without being doped with yttrium. Furthermore, unlike other ZnO films, the grains of YZO thin films appeared to separate from one another rather than aggregating together as both types of the films were annealed under the same environment. The photoluminescence characteristic measured showed that the UV emission was the only radiation obtained. However, the UV emission intensity of YZO thin film was much stronger than that of the ZnO thin film after annealing them with the same condition. It was also found that the intensity increased with an increase in the annealing temperature, which was caused by the exciton generated and the texture surface of the YZO thin film.  相似文献   

6.
Polymer–nanoparticle hydrogels are a unique class of self-assembled, shear-thinning, yield-stress fluids that have demonstrated potential utility in many impactful applications. Here, we present a thorough analysis of the gelation and yielding behavior of these materials with respect to the polymer and nanoparticle component stoichiometry. Through comprehensive rheological and diffusion studies, we reveal insights into the structural dynamics of the polymer nanoparticle network that identify that stoichiometry plays a key role in gelation and yielding, ultimately enabling the development of hydrogel formulations with unique shear-thinning and yield-stress behaviors. Access to these materials opens new doors for interesting applications in a variety of fields including tissue engineering, drug delivery, and controlled solution viscosity.  相似文献   

7.
Simultaneous analysis of homotaurine and its homologous, taurine, is a highly challenging issue, especially in matrices they exist simultaneously. A simple precolumn derivatization procedure combined with high-performance liquid chromatography–fluorescence detection was developed for simultaneous determination of homotaurine and taurine in marine macro-algae. The analytes were derivated with o-phthalaldehyde at an ambient temperature and alkaline medium. Calibration curves were linear in the ranges of 50–2500 µg L?1 for homotaurine and 100–2500 µg L?1 for taurine with the coefficients of determination higher than 0.998. Limits of detection of homotaurine and taurine were 15 and 30 µg L?1, respectively. Intraday (n = 6) and inter-day (n = 4) precisions of the method were satisfactory with relative standard deviations less than 6.0%. Good recoveries (>94%) were acquired by the method for extraction of homotaurine and taurine from algae matrices. Liquid chromatography–mass spectrometry was also used to confirm detection of the analytes in algae samples. The data suggest that the method was successfully applied to simultaneous determination of homotaurine and taurine in algae samples.  相似文献   

8.
The electrochemical and electrocatalytic behaviour of Pt/Pd nanoparticles prepared in water-in-oil microemulsion was reported. The catalytic activity of the nanoparticles was studied by using the reactions of dissociative adsorption of methanol and formic acid. The use of these surface probe reactions allowed the detection of palladium at the surface of the nanoparticles. The electrochemical stability of the particles was also investigated by voltammetry and electrochemical quartz crystal microbalance (EQCM). We shown that EQCM technique may be quantitatively used to correlate mass and area modifications when the electrochemical conditions produce corrosion of the elements of the alloy.  相似文献   

9.
Research on Chemical Intermediates - Hydrogels were synthesized by grafting polyacrylamide onto dextran using N,N′-methylene-bis-acrylamide as a cross-linker. The hydrogels were converted...  相似文献   

10.
11.
With the view of designing new nanoparticle (NP)–aptamer conjugates and proving their suitability as biorecognition tools for miniaturized molecular diagnostics, new maghemite–silica core–shell NP–aptamer conjugates were characterized for the first time in terms of grafting rate and colloidal stability under electrophoretic conditions using capillary electrophoresis. After the grafting rate (on the order of six to 50) of the lysozyme-binding aptamer had been estimated, the electrophoretic stability and peak dispersion of the resulting oligonucleotide–NP conjugates were estimated so as to determine the optimal separation conditions in terms of buffer pH, ionic strength and nature, as well as temperature and electric field strength. The effective surface charge density of the NPs was close to zero for pH lower than 5, which led to some aggregation. The NPs were stable in the pH range from 5 to 9, and an increase in electrophoretic mobility was evidenced with increasing pH. Colloidal stability was preserved at physiological pH for both non-grafted NPs and grafted NPs in the 10–100 mM ionic strength range and in the 15–60 °C temperature range. A strong influence of the nature of the buffer counterion on NP electrophoretic mobility and peak dispersion was evidenced, thus indicating some interactions between buffer components and NP–aptamer conjugates. Whereas an electric field effect (50–900 V cm?1) on NP electrophoretic mobility was evidenced, probably linked to counterion dissociation, temperature seems to have an appreciable effect on the zeta potential and aptamer configuration as well. This information is crucial for estimating the potentialities of such biorecognition tools in electrophoretic systems.  相似文献   

12.
Research on Chemical Intermediates - A variety of heterocyclic nitrogen cores in the form of indole moieties were linked to the natural isoquinoline alkaloid molecule berberine to achieve...  相似文献   

13.
Circular dichroism (CD), UV–vis absorption, fluorescence, and resonance light scattering (RLS) spectroscopies were used to elucidate the role of the DNA sequence, linkers between DNA and porphyrin, and metal in the porphyrin coordination center on the self-assembly of DNA–porphyrin conjugates. A series of eight non-self-complementary DNA–porphyrin conjugates have been synthesized with zinc and free-base porphyrins covalently attached to the short ODNs (A8 or T8) via amide or phosphate linker. A small structural modification (e.g., amide linker replaced by the phosphate linker) showed a dramatic effect on the aggregation properties of DNA–porphyrin conjugates and greatly altered their spectroscopic properties. At low ionic strength, porphyrin aggregation was not observed for any conjugate. An increase in the ionic strength caused two out of eight conjugates to form chiral porphyrin dimers.  相似文献   

14.
Possible variants of the rheological behavior of silica model dispersions have been analyzed. Different types of interaction between the particles and a dispersion medium make it possible to obtain different systems from low-viscosity sols to gels. Proton-donor (water) and aprotic (dimethyl sulfoxide) media have been used for comparison. Dispersions in the aprotic medium behave as non-Newtonian viscous fluids exhibiting shear thinning or shear thickening depending on deformation rate. Aqueous dispersions are viscoelastic and viscoplastic objects that exhibit the shear thickening at stresses higher than the yield stress. The introduction of small amounts of poly(ethylene oxide) into the organic dispersion medium initiates gelation. An increase in the polymer content in the dispersion medium above the concentration corresponding to the formation of a macromolecular network promotes an increase in stiffness and strength of the gels. The rheological behavior of gels is influenced by the polymer molecular mass and its affinity for a solvent.  相似文献   

15.

A label-free, rapid response colorimetric aptasensor for sensitive detection of chloramphenicol (CAP) was proposed, which was based on the strategy of ssDNA-modified gold nanoparticle (AuNP) aggregation assisted by lanthanum (La3+) ions. The AuNPs generated a color change that could be monitored in the red, green, and blue and analyzed by the smartphone imaging app. La3+, as a trigger agent, strongly combined with the phosphate groups of the surface of ssDNA-AuNPs probe, which helps create AuNP aggregation and the color change of AuNPs from red to blue. On the contrary, when mixing with CAP, the aptamer (Apt) bound to CAP to form a rigid structure of the Apt-CAP complex, and La3+ attached to the phosphate groups of the complex, which prevented the aptamer from binding to the surface of the AuNPs. As a result, the color of the AuNPs changed to violet-red. Finally, UV-vis absorption spectroscopy and the smartphone imaging app were employed to determine CAP with a lower detection limit of 7.65 nM and 5.88 nM, respectively. The proposed strategy featuring high selectivity and strong anti-interference ability for detection of CAP in practical samples was achieved. It is worth mentioning that the simple and portable colorimetric aptasensor will be used for facilitating on-site detection of food samples.

  相似文献   

16.
17.
A novel and low-cost optical sensor for the naked eye detection of Cd2+in aqueous media based on mesoporous silica containing 4-(2-pyridylazo)resorcinol (PAR) as a probe molecule anchored by N-trimethoxysilylpropyl-N,N,N-trimethylammonium chloride (TMAC) was prepared. The effects of various factors such as pH, solvent volume, temperature, reaction time, amount of the material, and the presence of various ions were studied in order to optimize operating conditions. The detection was based on the color change of PAR from orange-yellow to purple as a result of complexation with Cd2+. The intensity of the Cd-PAR complex varies linearly with the Cd2+concentration, from zero to 1.78×10−7 mol dm−3. The detection and quantification limits for the method when determining Cd2+ were 1.75×10−8 and 5.77×10−8 mol dm−3, respectively, with a correlation coefficient of 0.99. Good chemical stability of the material was observed for a period of five months. The developed sensor was applied to the analysis of various industrial effluents and tap water samples. Electronic supplementary material Supplementary material is available for this article at  相似文献   

18.
A sensor array made by combining four fluorescent tricyclic basic dyes with cucurbiturils is able to identify and discriminate 18 α-amino acids up to 10−4 M without the need of enzyme activation.  相似文献   

19.
Deposition of nanoparticles on the surface of a variety of materials is a subject of great interest due to their potential applications in electronic devices, sensing, catalysis and bio-medical sciences. In this context, we have explored and compared various methodologies to generate gold and silver nanoparticles on the surface of cellulose fibers. It was found that boiling of the cellulose fibers in alkaline solution of gold and silver salts led to the formation and immobilization of gold and silver nanoparticles. However, in case of lecithin treated and thiol-modified cellulose fibers, high temperature was not essentially required for the formation and deposition of nanoparticles on cellulose substrate. In both these cases, fairly uniform metal nanoparticles were obtained in good yields (~43 wt% gold loading in case of thiol modified cellulose fibers) at room temperature. Borohydride-reduction method resulted in relatively lower loading (~22 wt%) with a wide size distribution of gold and silver nanoparticles on cellulose fibers. All these nanoparticle–cellulose composites were thoroughly characterized using scanning electron microscopy, energy dispersive X-ray, Fourier transform infrared spectroscopy, UV–visible spectroscopy, and elemental analyzer. Thiol modified cellulose–gold nanoparticle composites served as active catalysts in the reduction of 4-nitrophenol into 4-aminophenol.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号