首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vegetable oils provide high nutritional value in the human diet. Specifically, extra virgin olive oil is one of the main ingredients of the Mediterranean diet, which is among the healthiest of eating practices. This article reviews the use of Raman spectroscopy for analyzing edible vegetable oils including olive oil. Although the spectra for edible vegetable oils are similar, they exhibit some differences which, however small, enable their discrimination. Thus, Raman spectra allow one to determine the degree of unsaturation of oils. This property is correlated with the iodine value but much faster and simpler to obtain. The degree of unsaturation can be used to classify and authenticate oils, which is especially useful with high-quality oils. In fact, adulteration with mixtures of more inexpensive oils can be easily detected by Raman spectroscopy. This technique additionally allows some minor components present in unsaponifiable matter to be identified. Fats in general and vegetable oils in particular, are prone to oxidation. Thus, double bonds in them are oxidized to form triglycerides. Vegetable oils are widely used for frying and Raman spectroscopy allows for their oxidative stability against heating at the usual frying temperatures to be assessed.  相似文献   

2.
In this work, virgin olive oil mixed with essential oils from rosemary has been analyzed by means of Raman spectroscopy. First of all, experimental design has been employed in order to define the Raman spectroscopy's parameters, final measuring conditions were: acquisition time of 30 s, five accumulations, and the intensity of the laser power at 75 mW. The Raman spectra were initially measured at full range (150–3000 cm−1), but a narrower window assured faster accumulations and more accurate predictions. The calibration solutions of eucalyptol and camphor in olive oil were prepared following a central composite design and different spectra pre‐processing algorithms were evaluated. To conclude, essential oils obtained by means of Supercritical Fluid Extraction, Ultrasounds, and hydrodistillation were mixed with virgin olive oil and quantified with Raman spectroscopy. Predicted concentrations of the olive oil mixtures were compared with concentrations obtained for the same samples by a Comprehensive Two‐Dimensional Gas Chromatographic (GC × GC) method. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
During the last decade there has been an apparent increase in the prevalence of counterfeit medicines in developing as well as developed countries. The pivotal antimalarial artesunate has been counterfeited on a large scale in SE Asia. In this work, the possibilities of Raman spectroscopy are explored as a fast and reliable screening method for the detection of counterfeit artesunate tablets. In this study, 50 ‘artesunate tablets’, purchased in SE Asia, were examined. This spectroscopic method was able to distinguish between genuine and counterfeit artesunate and to identify the composition of the counterfeit tablets. These contained no detectable levels of artesunate, but consisted mostly of starch, calcite (CaCO3), and paracetamol (4‐acetamidophenol). In one particular case an admixture of rutile (TiO2) and artesunate was detected. The results of the investigation by Raman spectroscopy were in agreement with those of colorimetric tests and of liquid chromatography‐mass spectrometry on the artesunate. Moreover, principal components analysis (PCA) was combined with hierarchical cluster analysis to establish an automated approach for the discrimination between different groups of counterfeits and genuine artesunate tablets. These results demonstrate that Raman spectroscopy combined with multivariate analysis is a promising and reliable methodology for the fast characterization of genuine and counterfeit artesunate antimalarial tablets. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
This study established a quantitative micro‐Raman spectroscopic (MRS) method for measuring multicomponents (binary and ternary compositions) of prevalent urine calculi extracted from the ureter after the ureteroscopic lithotripsy (URSL) procedure. The analysis used calibration curves of known mixtures of synthetically prepared calcium oxalate monohydrate (COM), hydroxyapatite (HAP), calcium oxalate dehydrate (COD), dicalcium phosphate dehydrate (DCPD), and uric acid. A variety of samples of binary and ternary mixtures including COM/HAP, COM/COD, COD/HAP, COM/uric acid, COD/uric acid, HAP/uric acid, HAP/DCPD, and COM/COD/HAP were prepared in various concentration ratios for use as the basis of the quantitative analysis. Intensities of the characteristic bands at 961 cm−1 (IHAP), 986 cm−1 (IDCPD), 1402 cm−1 (IUricAcid), 1462 cm−1 (ICOM), and 1477 cm−1 (ICOD) were used for the calculation. We derived a set of quantitative analysis equations for the ternary composition COD/COM/HAP group by combining two binary equations from the groups COM/COD and the HAP/COM. This study quantitatively measured 18 urine samples extracted from the 18 patients' ureters after the URSL procedure. Fifteen samples were binary mixtures, whereas three samples were ternary mixtures. This research successfully applied the quantitative MRS‐based analysis technique from bench to bedside. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
6.
High wavenumber (HW) Raman spectroscopy has weaker fluorescence background compared with fingerprint (FP) region. This study aims to evaluate the discrimination feasibility of nasopharyngeal non‐cancerous and nasopharyngeal cancer (NPC) tissue with both FP and HW Raman spectroscopy. HW Raman spectra of nasopharyngeal tissue were obtained for the first time. Raman spectra were collected to differentiate nasopharyngeal non‐cancerous (n = 37) from NPC (n = 41) tissues in FP (800–1800cm−1), HW (2700–3100cm−1), and integrated FP/HW region. First, to assess the utility of this method, the averaged Raman spectral intensities and intensity ratios of corresponding Raman bands were analyzed in HW and FP regions, respectively. The results show that intensities as well as the ratios of specific Raman peaks might be helpful in distinguishing nasopharyngeal non‐cancerous from NPC tissue with the HW Raman spectroscopy, as with FP Raman reported before. The multivariate statistical method based on the combination of principal component analysis–liner discriminant analysis (PCA‐LDA), together with leave‐one‐patient‐out, cross‐validation diagnostic algorithm, was used for discriminating nasopharyngeal non‐cancerous from NPC tissue, generating sensitivities of 87.8%, 85.4%, and 95.1% and specificities of 86.5%, 91.9%, and 89.2%, respectively, with Raman spectroscopy in the FP, HW, and integrated FP/HW regions. The posterior probability of classification results and receiver operating characteristic curves were utilized to evaluate the discrimination of PCA‐LDA algorithm, verifying that HW Raman spectroscopy has a positive effect on the differentiation for the diagnosis of NPC tissue by integrated FP/HW Raman spectroscopy. What's more, the potential of Raman spectroscopy used for differentiating different pathology NPC tissues was also discussed. The results demonstrate that both FP and HW Raman spectroscopy have the potential for diagnosis and detection in early nasopharyngeal carcinoma, and HW Raman spectroscopy may improve the discrimination of NPC tissue compared with FP region alone, providing a promising diagnostic tool for the diagnosis of NPC tissue. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
We have investigated the potential of Raman spectroscopy with excitation in the visible spectral range (VIS Raman) as a tool for the classification of different vegetable oils and the quantification of adulteration of virgin olive oil as an example. For the classification, principal component analysis (PCA) was applied, where 96% of the spectral variation was characterized by the first two components. A significant similarity between sunflower oil and extra‐virgin olive oil was found using this approach. Therefore, sunflower oil is a potential candidate for adulteration in most commercially available olive oils. Beside the classification of the different vegetable oils, we have successfully applied Raman spectroscopy in combination with partial least‐squares (PLS) regression analysis for very fast monitoring of adulteration of extra‐virgin olive oil with sunflower oil. Different mixtures of extra‐virgin olive oil with three different sunflower oil types were prepared between 5 and 100% (v/v) in 5% increments of sunflower oil. While in the present context the adulteration usually refers to the addition of reasonable amounts of the adulterant (given the similarity with the basic product), we show that the technique proposed can also be used for trace analysis of the adulterant. Without using techniques like surface‐enhanced Raman scattering (SERS), a quantitative detection limit down to 500 ppm (0.05%) could be achieved, a limit irrelevant for adulteration in commercial terms but significant for trace analysis. The qualitative detection limit even was at considerably lower concentration values. Based on PCA, a clear discrimination between pure extra‐virgin olive oil and olive oil adulterated with sunflower oil was achieved. The adulterant content was successfully determined using PLS regression with a high correlation coefficient and small root mean‐square error for both prediction and validation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Raman spectroscopy was used for rapid and in situ measurements of alcohols in alcohol-water binary systems. An external standard was used to eliminate factors such as laser power or instrumental effects. Band ratios between the Raman bands of the target molecule and that of acetonitrile as external standard were calculated and found to be proportional to the mass fraction of alcohol. Better linearity was achieved as compared with that in the calibration curve obtained by plotting the Raman intensity alone. The equations of the calibration curves were y=0.2747x with R2 of 0.9996 and y=0.2189x+1.340×10−3 with an R2 of 1.000 in methanol-water and in ethanol-water binary systems, with y and x denoting the Raman intensity ratio and the mass fraction of alcohol, respectively.  相似文献   

9.
The Raman spectra of nine monohydroxy alcohols have been obtained by confocal Raman spectrometer at room temperature. Based on the Raman spectra, the density functional theory was used to analyze the characteristic Raman bands of monohydric alcohols. Through the discussion of the characteristic Raman bands and their corresponding assignment, four major Raman bands were selected to identify nine monohydric alcohols using principal component analysis and Euclidean distance. Finally, nine saturated monohydroxy alcohols can be distinguished exactly, and the recognition rate is 100%.  相似文献   

10.
Raman spectroscopy can be a powerful tool for the characterization of modified amino acids and proteins. In addition to the potential for quantitative results, it offers the advantage of not requiring any sample preparation. Modification of amines and thiols on amino acids and proteins are common reactions used for medical, biological, food, and agricultural purposes. We hypothesized that the Raman spectrum could be used to quantify the reactions and would be more informative than typical characterization techniques such as the ninhydrin test. To prove the hypothesis, the amino acids alanine, cysteine, and lysine were modified with ethyl vinyl sulfone (EVS) using a nucleophilic addition reaction known as the Michael addition and the product was characterized using Raman spectroscopy. The Raman spectroscopy results were compared with ultraviolet‐visible spectroscopy results based on ninhydrin analysis of the modified amino acids. The Raman spectroscopy analysis was able to discern site‐specific reactions on the amino acids and suggested that more amino acid moieties were substituted than predicted using the ninhydrin test alone. Substitution of the full protein ovalbumin with EVS showed similar results. The ninhydrin test showed the substitution of primary amines and thiols but could not detect substitution of secondary amines remaining after loss of the primary amine. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
Surface‐enhanced Raman spectroscopy (SERS) has the potential to make a significant impact in biology research due to its ability to provide information orthogonal to that obtained by traditional techniques such as mass spectrometry (MS). While SERS has been well studied for its use in chemical applications, detailed investigations with biological molecules are less common. In addition, a clear understanding of how methodology and molecular characteristics impact the intensity, the number of peaks, and the signal‐to‐noise of SERS spectra is largely missing. By varying the concentration and order of addition of the SERS‐enhancer salt (LiCl) with colloidal silver, we were able to evaluate the impact of these variables on peptide spectra using a quantitative measure of spectra quality based on the number of peaks and peak intensity. The LiCl concentration and order of addition that produced the best SERS spectra were applied to a panel of synthetic peptides with a range of charges and isoelectric points (pIs) where the pI was directly correlated with higher spectral quality. Those peptides with moderate to high pIs and spectra quality scores were differentiated from each other using the improved method and a hierarchical clustering algorithm. In addition, the same method and algorithm was applied to a set of highly similar phosphorylated peptides, and it was possible to successfully classify the majority of peptides on the basis of species‐specific peak differences. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
It is a common practice in microbiology to induce and accelerate sporulation of spore‐forming bacteria by adding small amounts of divalent manganese to the cultivation medium. By micro‐Raman spectroscopy the effect of supplementary divalent manganese during the growth and sporulation of Bacillus spp. bacteria was studied. The spectral alterations in the Raman spectra of single endospores due to this cultivation parameter comprised slight alterations of the bands attributed to intracellular, abundantly present calcium dipicolinate (CaDPA). Those signals suffered a loss of intensity or partial band broadening because of the appearance of new weak signals next to them. Exclusively in Raman spectra of single B. sphaericuss endospores, the band at 1485 cm−1 vanished. The theoretical spectra of CaDPA and manganese dipicolinate (MnDPA) were calculated and compared with the experimental spectra to prove the hypothesis that, while the overall intracellular DPA content decreased, an intracellular assembly of MnDPA in the endospores might also occur. Band shifts of the COO vibrations in the salt's spectra as well as in the endospore's spectra, and the decrease of the two CaDPA bands, confirmed this proposal. The appearance of the 1030 cm−1 band in all Bacillus spectra as well as the disappearance of the 1485 cm−1 band in the B. sphaericus spectra still needs to be clarified. With the help of two multivariate chemometric methods, these spectral alterations allowed discrimination between single endospores of different Bacillus strains cultivated on normal nutrient agar (NA) and those grown on NA with MnSO4 · xH2O addition. With these investigations, a possible strategy is shown to trace back the cultivation environment of matured single endospores. Utilizing the joint concept of micro‐Raman spectroscopy and chemometric analysis, the differentiation between natively grown endospores and those cultivated in a laboratory with the help of manganous salts as a common sporulation accelerator seems accomplishable. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
The relationship between Mg# [ = 100 Mg/(Mg + Fe) in mol] and the Raman shift was analyzed precisely for olivine [(Mg, Fe)2SiO4] samples with Mg# between 100 and 62.8. Two prominent peaks at 826–820 cm−1 (peak 1) and 858–849 cm−1 (peak 2) and three subordinate peaks at 883–881 cm−1 (peak 3), 920–914 cm−1 (peak 4), and 967–951 cm−1 (peak 5) were observed to shift monotonously to lower wavenumbers with decreasing Mg#. The ΔMg#( = Mg#refMg#) versus Δν(= νref − ν) can be linearly regressed for each peak as ΔMg# = A Δν, where ν is a peak wavenumber of olivine with Mg# ranging from 100 to 62.8, and νref is that of olivine with a reference value of Mg#, namely, Mg#ref. We set Mg#ref as 100 (i.e.pure forsterite Mg2SiO4) whereas A is a regression parameter (5.789, 4.294, 12.34, 6.348, and 2.09, respectively,for peaks 1, 2, 3, 4, and 5). This equation enables us to avoid small inter‐laboratory differences of wavenumber calibration. The equation for peak 2 yields estimations of Mg# in geologically satisfactory precision, ± 1 Mg# (1σ) in the Mg# range of 100–62.8. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
Molecular structure of the sclerotic dentin in noncarious cervical lesions (NCCLs) including both the inorganic phase and organic phase was investigated using Raman spectroscopy. It was found that NCCL sclerotic dentin was hypermineralized with the mineral/matrix ratios 2–3 times higher than those of normal dentin, which was caused by both the increase of mineral content and decrease of organic matrix (collagen) content in the sclerotic dentin. For the inorganic phase, the phosphate band (PO43−, ν1, symmetric stretching vibrational mode) in NCCL sclerotic dentin was shifted from 960 to 963 cm−1, and the width of this band was decreased from 16.4 to 10.4 cm−1, indicating that the degree of mineral crystallinity in NCCL sclerotic dentin was higher than that of normal dentin. In addition, the carbonate content in the mineral of NCCL sclerotic dentin was less than that of normal dentin. As compared to the inorganic phase, the changes within the organic phase were not dramatic. However, the changes in collagen cross‐link density along with other spectral changes were still detectable. There was a noteworthy reduction in the ratio of nonreducible to reducible cross‐links in the NCCL sclerotic dentin, indicating that cross‐link breaks occurred in the collagen matrix of the lesions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
In this work, FT‐Raman spectroscopy was explored as a fast and reliable screening method for the assessment of milk powder quality and the identification of samples adulterated with whey (1–40% w/w). Raman measurements can easily differentiate milk powders without the need of sample preparation, whereas the traditional methods of quality control, including high‐performance liquid chromatography, are laborious and slow. The FT‐Raman spectra of whole, low‐fat, and skimmed milk powder samples were obtained and distinguished from commercial milk powder samples. In addition, the exploratory analysis employing data from Raman spectroscopy and principal component analysis (PCA)allowed the separation of milk powder samples according to type,identifying differences between samples in the same group. Multivariate analysis was also developed to classify the adulterated milk powder samples using PCA and partial least squares discriminate analysis (PLS‐DA). The resulting PLS‐DA model correctly classified 100% of the adulterated samples. These results clearly demonstrate the utility of FT‐Raman spectroscopy combined with chemometrics as a rapid method for screening milk powder. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
The techniques of inverse Raman spectroscopy, Raman‐induced polarization spectroscopy (RIPS), and optical heterodyne RIPS (OHD‐RIPS) are compared by probing the Q‐branch of the nitrogen molecule. The signal is measured employing either a photomultiplier tube (low background level–RIPS) or a photodetector (high background level–IRS and OHD‐RIPS). The measurements are performed using atmospheric mixtures of N2 Ar with concentrations varying from 0 to 79% N2. This strategy permits estimation of detection limits using the different techniques. Pump and probe energy levels are varied independently to study signal dependence on laser irradiance. A theoretical treatment is presented on the basis of the Raman susceptibility equations, which permits the calculation of spectra for all three techniques. Calculated Q‐branch spectra are compared with the measured spectra for the interactions of a linearly polarized probe beam with a linearly or circularly polarized pump beam. The polarizer angle in the detection path for OHD‐RIPS has a dramatic effect on the shape of the spectrum. The calculated and experimental OHD‐RIPS spectra are in good agreement over the entire range of investigated polarizer angles. Detection limits using these techniques are analyzed to suggest their applicability for measuring other species of importance in combustion and plasma systems. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
Combining membrane electrophoresis with surface‐enhanced Raman scattering (SERS) spectroscopy, the serum proteins were first purified and then mixed with silver nanoparticles to perform SERS spectral analysis. Therefore, the spectral signatures were enhanced to high‐fidelity SERS signatures because of the purification procedure of the first step. We used the method to analyze blood plasma samples from nasopharyngeal cancer patients (n = 43) and healthy volunteers (n = 33) for cancer detection. Principle component analysis of the SERS spectra revealed that the data points for the cancer group and the normal group form distinct, completely separated clusters with no overlap. Therefore, the nasopharyngeal cancer group can be unambiguously discriminated from the normal group, i.e., with both diagnostic sensitivity and specificity of 100%. These results are very promising for developing a label‐free, noninvasive, and reliable clinical tool for rapid cancer detection and screening. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
In the present work a set of eight altarpieces of the 16th century (1532–1534), attributed to the Ferreirim Masters (Gregório Lopes, Garcia Fernandes and Cristóvão de Figueiredo), from the Santo António de Ferreirim Monastery (North of Portugal), were analysed by micro‐Raman spectroscopy. For this purpose some samples were taken from the paintings to characterise its artist's ‘school’. It was found that the preparation was made with chalk and gypsum and the palette composed mainly of lamp black, azurite, lead white (mixed with other pigments), lead–tin yellow type I, goethite (the main constituent of yellow ochre), red lead (as under painting), haematite (the main constituent of red ochre) and vermilion. Indigo was detected in one sample. Some derivatives and degradation products were found mainly in the panels subjected to high temperatures during a fire occurred in 1954: a degradation product from massicot or red lead, lead carbonate (dehydrated derivative of lead white), bassanite and anhydrite (hemi‐ and dehydrated forms of gypsum). These results are compared with those of previous total reflection X‐ray fluorescence spectroscopy (TXRF) analyses. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
This work presents the development of a method for rapid bacterial identification based on the autofluorescence spectrum. It was demonstrated differences in the autofluorescence spectrum in three bacterial species and the subsequent separation, through the Principal Components Analysis (PCA) technique, in groups with high likeness, that could identify the bacteria in less than 10 min. Fluorescence spectra of 60 samples of 3 different bacterial species (Escherichia coli, EC, Enterococcus faecalis, EF and Staphylococcus aureus, SA), previously identified by automated equipment Mini API, were collected in 10 excitation wavelengths from 330 to 510 nm. The PCA technique applied to the fluorescence spectra showed that bacteria species could be identified with sensitivity and specificity higher than 90% according to differences that occur within the spectra with excitation of 410 nm and 430 nm. This work presented a method of bacterial identification of three more frequent and more clinically significant species based on the autofluorescence spectra in the excitation wavelengths of 410 and 430 nm and the classification of the spectra in three groups using PCA. The results demonstrated that the bacterial identification is very efficient with such methodology. The proposed method is rapid, ease to perform and low cost compared to standard methods.  相似文献   

20.
Polymethoxyflavones (PMFs) belong to a unique class of flavonoids mainly found in citrus fruits. Characterization of different PMFs is important to further understand and apply these compounds as functional ingredients in food. The objective of this study is to characterize three monohydroxylated PMFs using surface‐enhanced Raman spectroscopy (SERS) and to determine the role of hydroxylation in their SERS behaviors. Serial concentrations of 3′‐hydroxylnobiletin (3HN), 4′‐hydroxylnobiletin (4HN), and 5‐hydroxylnobiletin (5HN) were incubated with silver dendrites for SERS analysis. Results demonstrated that three PMFs exhibited significantly different SERS behaviors. 5HN produced saturation peak intensity at relative low concentration (0.05 mM), while 3HN and 4HN produced saturation peak intensity at much higher concentrations (0.5 and 1 mM, respectively) according to principal component analysis. Below saturation, 5HN had the highest peak intensity, while 3HN had the lowest peak intensity. After reaching saturation, 4HN and 5HN had similar relative peak intensities that were much greater than 3HN. The HPLC analysis revealed that 36.13 ± 1.06% of 5HN, 18.40 ± 3.31% of 4HN, and 9.66 ± 0.94% of 3HN were bound to silver. Based on these results, we speculated that different positions of hydroxylation of PMFs were critical for determining spatial conformation of PMFs on binding sites, resulting in different binding affinities and saturation points, therefore their SERS behaviors. This study first reported that the position of hydroxylation in the monohydroxylated PMFs was crucial for their interactions with silver dendrites and provided valued information for further applying SERS for molecular characterization of flavonoids. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号