首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An electrochemical DNA biosensor based on the recognition of single stranded DNA (ssDNA) by hybridization detection with immobilized complementary DNA oligonucleotides is presented. DNA and oligonucleotides were covalently attached through free amines on the DNA bases using N-hydroxysulfosuccinimide (NHS) and N-(3-dimethylamino)propyl-N′-ethylcarbodiimide hydrochloride (EDC) onto a carboxylate terminated alkanethiol self-assembled monolayers (SAM) preformed on a gold electrode (AuE). Differential pulse voltammetry (DPV) was used to investigate the surface coverage and molecular orientation of the immobilized DNA molecules. The covalently immobilized probe could selectively hybridize with the target DNA to form a hybrid on the surface despite the bases being attached to the SAM. The changes in the peak currents of methylene blue (MB), an electroactive label, were observed upon hybridization of probe with the target. Peak currents were found to increase in the following order: hybrid-modified AuE, mismatched hybrid-modified AuE, and the probe-modified AuE which indicates the MB signal is determined by the extent of exposed bases. Control experiments were performed using a non-complementary DNA sequence. The effect of the DNA target concentration on the hybridization signal was also studied. The interaction of MB with inosine substituted probes was investigated. Performance characteristics of the sensor are described.  相似文献   

2.
A label-free electrochemical detection protocol for DNA hybridization is reported for the first time by using a gold electrode (AuE). The oxidation signal of guanine was monitored at +0.73 V by using square wave voltammetry (SWV) on self-assembled l-cysteine monolayer (SAM) modified AuE. The electrochemical determination of hybridization between an inosine substituted capture probe and native target DNA was also accomplished. 6-mer adenine probe was covalently attached to SAM via its amino link at 5 end. Then, 6-mer thymine-tag of the capture probe was hybridized with the adenine probe, thus left the rest of the oligonucleotide available for hybridization with the target. The dependence of the guanine signal upon the concentration of the target was observed. Probe modified AuE was also challenged with non-complementary and mismatch containing oligonucletides. Label-free detection of hybridization on AuE is greatly advantageous over the existing carbon and mercury electrode materials, because of its potential applicability to microfabrication techniques. Performance characteristics of the genosensor are described, along with future prospects.  相似文献   

3.
Reisberg S  Dang LA  Nguyen QA  Piro B  Noel V  Nielsen PE  Le LA  Pham MC 《Talanta》2008,76(1):206-210
An electrochemical hybridization biosensor based on peptide nucleic acid (PNA) probe is presented. PNA were attached covalently onto a quinone-based electroactive polymer. Changes in flexibility of the PNA probe strand upon hybridization generates electrochemical changes at the polymer-solution interface. A reagentless and direct electrochemical detection was obtained by detection of the electrochemical changes using square wave voltammetry (SWV). An increase in the peak current of quinone was observed upon hybridization of probe on the target, whereas no change is observed with non-complementary sequence. In addition, the biosensor is highly selective to effectively discriminate a single mismatch on the target sequence. The sensitivity is also presented and discussed.  相似文献   

4.
A novel assay for the voltammetric detection of 18-bases DNA sequences relating to Chronic Myelogenous Leukemia (CML, Type b3a2) using methylene blue (MB) as the hybridization indicator was reported. DNA was covalently attached onto a glassy carbon electrode (GCE) through amines of the DNA bases using N-hydroxysulfosuccinimide (NHS) and N-(3-dimethylamion)propyl-N′-ethyl carbodiimidehydrochloride (EDC). The covalently immobilized single-stranded DNA (ssDNA) could selectively hybridize with its complementary DNA (cDNA) in solution to form double-stranded DNA (dsDNA) on the surface. A significant increase of the peak current for methylene blue upon the hybridization of immobilized ssDNA with cDNA in the solution was observed. This peak current change was used to monitor the recognition of CML DNA sequence. This electrochemical approach is sequence specific as indicated by the control experiments in which no peak current change was observed if a non-complementary DNA sequence was used. Factors, such as DNA target concentration and hybridization conditions determining the sensitivity of the electrochemical assay were investigated. Under optimal conditions, this sensor has a good calibration range between 1.25 × 10−7 and 6.75 × 10−7 M, with CML DNA sequence detection limit of 5.9 × 10−8 M.  相似文献   

5.
《Electroanalysis》2003,15(7):667-670
An electrochemical hybridization biosensor based on peptide nucleic acid (PNA) probes with a label‐free protocol is described. The detection of PNA‐DNA and DNA‐DNA hybridizations were accomplished based on the oxidation signal of guanine by using differential pulse voltammetry (DPV) at carbon paste electrode (CPE). It was observed that the oxidation signals of guanine obtained from the PNA and DNA probe modified CPEs were higher than those obtained from the PNA‐DNA and DNA‐DNA hybrid modified CPEs due to the accessible unbound guanine bases. The detection of hybridization between PNA probe and point mutation containing DNA target sequences was clearly observed due to the difference of the oxidation signals of guanine bases, because the point mutation was guanine nearly at the middle of the sequence. The effect of the DNA target concentration on the hybridization signal was also observed. The PNA probe was also challenged with excessive and equal amount of noncomplementary DNA and also mixtures of point mutation and target DNA.  相似文献   

6.
In this paper, we report a new PNA biosensor for electrochemical detection of point mutation or single nucleotide polymorphism (SNP) in p53 gene corresponding oligonucleotide based on PNA/ds-DNA triplex formation following hybridization of PNA probe with double-stranded DNA (ds-DNA) sample without denaturing the ds-DNA into single-stranded DNA (ss-DNA). As p53 gene is mutated in many human tumors, this research is useful for cancer therapy and genomic study. In this approach, methylene blue (MB) is used for electrochemical signal generation and the interaction between MB and oligonucleotides is studied by differential pulse voltammety (DPV). Probe-modified electrode is prepared by self-assembled monolayer (SAM) formation of thiolated PNA molecules on the surface of Au electrode. A significant increase in the reduction signal of MB following hybridization of the probe with the complementary double-stranded oligonucleotide (ds-oligonucleotide) confirms the function of the biosensor. The selectivity of the PNA sensor is investigated by non-complementary ds-oligonucleotides and the results support the ability of the sensor to detect single-base mismatch directly on ds-oligonucleotide. The influence of probe and ds-DNA concentrations on the effective discrimination against complementary sequence and point mutation is studied and the concentration of 10?6 M is selected as appropriate concentration. Diagnostic performance of the biosensor is described and the detection limit is found to be 4.15 × 10?12 M.  相似文献   

7.
A new electrochemical PNA hybridization biosensor for detection of a 15‐mer sequence unique to p53 using indigo carmine (IC) as an electrochemical detector is described in this work. This genosensor is based on the hybridization of target oligonucleotide with its complementary probe immobilized on the gold electrode by self‐assembled monolayer formation. Because this label is electroactive in acidic medium, the interaction between IC and short sequence of p53 is studied by differential pulse voltammety (DPV) in 0.1 M H2SO4. The results of electrochemical impedance spectroscopy and cyclic voltammetry in the solution of [Fe(CN)6]3?/4? shows no breakage in PNA‐DNA duplex. A decrease in the voltammetric peak currents of IC is observed upon hybridization of the probe with the target DNA. The influence of probe concentration on effective discrimination against non‐complementary oligonucleotides is investigated and a concentration of 10?7 M is selected. The diagnostic performance of the PNA sensor is described and the detection limit is found to be 4.31×10?12 M.  相似文献   

8.
《Analytical letters》2012,45(3):519-535
Abstract

Highly sensitive label-free techniques of DNA determination are particularly interesting in relation to the present development of an electrochemical hybridization biosensor for the detection of short DNA fragments specific to the human papilloma virus (HPV). Unlabeled DNA probes have been immobilized by spontaneous coadsorption of thiolated single-stranded oligonucleotides (HS-ssDNA) onto the sensing surface of a screen-printed gold electrode (SPGE). The covalently immobilized single-stranded DNA probe (HS-ssDNA) could selectively hybridize with its complementary DNA (cDNA) in solution to form double-stranded DNA (dsDNA) on the surface. DNA is treated with acid (e.g., 0.5 M chloridric acid), and the acid-released purine bases are directly determined by square wave voltammetry (SWV).

Variables of the probe-immobilization and hybridization steps are optimized to offer convenient quantitation of HPV DNA target, in connection with a short hybridization time. Peak currents were found to increase in the following order: hybrid-modified SPGE, 11-base mismatched modified SPGE, 18-base mismatched SPGE, and the probe modified SPGE. Control experiments with noncomplementary oligonucleotides were carried out to assess whether the suggested DNA sensor responds selectively to the target. The effect of the target DNA concentration on the hybridization signal was also studied. Under optimal conditions, this sensor has a good calibration range with HPV DNA sequence detection limit of 2 pg · ml?1 (S/N = 3).  相似文献   

9.
PNA探针与DNA探针的系统比较   总被引:2,自引:0,他引:2  
肽核酸(Peptide Nucleic Acid,PNA)是近十几年发展起来的以中性酰胺键为骨架的脱氧核糖核酸(Deoxyribonucleic Acid,DNA)类似物,其结构介于多肽和DNA之间。由于PNA能够与DNA和RNA特异性地结合,可以制备PNA探针。与DNA探针相比,其杂交的稳定性和特异性增加且能在低盐浓度下进行杂交。本文从DNA和PNA的分子结构和性质、DNA探针和PNA探针的设计制备、杂交亲和性、杂交动力学以及在生物传感器上的应用等方面进行了系统比较。  相似文献   

10.
An electrochemical DNA genosensor constructed by using rough gold as electrode support is reported in this work. The electrode surface nanopatterning was accomplished by repetitive square-wave perturbing potential (RSWPP). A synthetic 25-mer DNA capture probe, modified at the 5′ end with a hexaalkylthiol, able to hybridize with a specific sequence of lacZ gene from the Enterobacteriaceae bacterial family was assembled to the rough gold surface. A 25 bases synthetic sequence fully complementary to the thiolated DNA capture probe and a 326 bases fragment of lacZ containing a fully matched sequence with the capture probe, which was amplified by a specific asymmetric polymerase chain reaction (aPCR), were employed as target sequences. The hybridization event was electrochemically monitored by using two different indicators, hexaammineruthenium (III) chloride showing an electrostatic DNA binding mode, and pentaamineruthenium-[3-(2-phenanthren-9-yl-vinyl)-pyridine] (in brief RuL) which binds to double stranded DNA (dsDNA) following an intercalative mechanism. After optimization of the different variables involved in the hybridization and detection reactions, detection limits of 5.30 pg μL−1 and 10 pg μL−1 were obtained for the 25-mer synthetic target DNA and the aPCR amplicon, respectively. A RSD value of 6% was obtained for measurements carried out with 3 different genosensors prepared in the same manner.  相似文献   

11.
Surface-enhanced Raman scattering (SERS) spectroscopy was used to monitor DNA hybridization of a fragment of the BRCA1 breast cancer susceptibility gene on modified silver surfaces. Rhodamine B was covalently attached to a 5′-amino-labeled oligonucleotide sequence (23 mer) through a succinimidyl ester intermediate in methanol. The silver surfaces were prepared by depositing a discontinuous layer (9.0 nm) of silver onto glass slides, which had been etched with HF to form a microwell platform, and subsequently modified with a monolayer of mercaptoundecanoic acid. The complementary probe was covalently attached to the silver surfaces using a succinimidyl ester intermediate in acetonitrile. The silver island substrate allows a very large enhancement of the Raman signal of the DNA-Rhodamine B, and clear distinction between hybridized samples and controls on a microwell array sampling platform.  相似文献   

12.
21-mer peptide acid nucleic acid (PNA) probe specific to 16s–23s rRNA spacer region of Mycobacterium tuberculosis has been covalently immobilized on polypyrrole–polyvinylsulphonate film electro-chemically deposited onto indium-tin-oxide (ITO) glass for detection of complementary target by monitoring guanine oxidation and redox indicators (methylene blue and ruthenium complex) up to 0.1 fmole, 0.1 attomole and 1.0 pmole, respectively within 30 s of hybridization time. The peptide nucleic acid immobilized polypyrrole–polyvinylsulphonate electrode can be used for hybridization detection with complementary sequence in heat-shocked genomic DNA and in serum samples containing genomic M. tuberculosis DNA up to 2.5 pg/μl within about 60 min at 30 °C and can be used 8–9 times.  相似文献   

13.
New chiral NiII complexes of Schiff bases of dehydroalanine with modified chiral auxiliaries (S)-2-N-[N′-(3,4-dichlorobenzyl)prolyl]aminobenzophenone (3,4-DCBPB), (S)-2-N-[N′-(3,4-dimethylbenzyl)prolyl]aminobenzophenone (3,4-DMBPB), (S)-2-N-[N′-(2-chlorobenzyl)prolyl]aminobenzophenone (2-CBPB), and (S)-2-N-[N′-(2-fluorobenzyl)prolyl]-aminobenzophenone (2-FBPB) have been synthesized. Asymmetric Michael addition reactions of primary and secondary amines and thiols to the dehydroalanine moieties of the complexes were studied. (S)-2-FBPB was found to be the best chiral auxiliary in terms of both selectivity of the reactions (de ~92–96%) and reactivity of the complexes. A novel synthetic route toward (S)-2-carboxypiperazine was developed based on the auxiliary.  相似文献   

14.
The design and facile synthesis of a novel chiral six-membered PNA analogue (2S,5R )-1-(N-Boc-aminoethyl)-5-(thymin-1-yl)pipecolic acid, aepipPNA, that upon incorporation into PNA sequences effected stabilization of complexes with target complementary DNA. This is the first example where a six membered-PNA is shown to be capable of forming stable complexes with DNA and further expands the repertoire of cyclic PNA analogues.  相似文献   

15.
A two-probe tandem DNA hybridization assay based on time-resolved fluorescence was employed to detect Escherichia coli strain. The amino modified capture probe was covalently immobilized on the common glass slide surface. The Eu(TTA)3(5-NH2-phen) with the characteristics of long lifetime and intense luminescence was labeled with reporter probe. The original extracted DNA samples without the purification and amplification process were directly used in the hybridization assay. The concentration of capture probe, hybridization temperature, hybridization and washing time were optimized. The detection limit is about 1.49 × 103 CFU mL−1E. coli cells, which is comparable to the value of most microbiology methods. The proposed method has the advantages of easy operation, satisfactory sensitivity and specificity, which can provide a promising technique for monitoring the microorganisms.  相似文献   

16.
In the present study, we investigated the properties of PNA and LNA capture probes in the development of an electrochemical hybridization assay. Streptavidin-coated paramagnetic micro-beads were used as a solid phase to immobilize biotinylated DNA, PNA and LNA capture probes, respectively. The target sequence was then recognized via hybridization with the capture probe. After labeling the biotinylated hybrid with a streptavidin–enzyme conjugate, the electrochemical detection of the enzymatic product was performed onto the surface of a disposable electrode. The assay was applied to the analytical detection of biotinylated DNA as well as RNA sequences. Detection limits, calculated considering the slope of the linear portion of the calibration curve in the range 0–2 nM were found to be 152, 118 and 91 pM, coupled with a reproducibility of the analysis equal to 5, 9 and 6%, calculated as RSD%, for DNA, PNA and LNA probes respectively, using the DNA target. In the case of the RNA target, the detection limits were found to be 51, 60 and 78 pM for DNA, PNA and LNA probes respectively.  相似文献   

17.
A novel approach to construct an electrochemical DNA sensor based on immobilization of a 25 base single-stranded probe, specific to E. coli lac Z gene, onto a gold disk electrode is described. The capture probe is covalently attached using a self-assembled monolayer of 3,3′-dithiodipropionic acid di(N-succinimidyl ester) (DTSP) and mercaptohexanol (MCH) as spacer. Hybridization of the immobilized probe with the target DNA at the electrode surface was monitored by square wave voltammetry (SWV), using methylene blue (MB) as electrochemical indicator. Variables involved in the sensor performance, such as the DTSP concentration in the modification solution, the self-assembled monolayers (SAM) formation time, the DNA probe drying time atop the electrode surface and the amount of probe immobilized, were optimized.

A good stability of the single- and double-stranded oligonucleotides immobilized on the DTSP-modified electrode was demonstrated, and a target DNA detection limit of 45 nM was achieved without signal amplification. Hybridization specificity was checked with non-complementary and mismatch oligonucleotides. A single-base mismatch oligonucleotide gave a hybridization response only 7 ± 3%, higher than the signal obtained for the capture probe before hybridization. The possibility of reusing the electrochemical genosensor was also tested.  相似文献   


18.
Mononuclear nickel(II) complexes were prepared by reaction of the three ONNO type reduced Schiff bases bis‐N,N′‐(2‐hydroxybenzyl)‐1,3‐propanediamine (LHH2), bis‐N,N′‐(2‐hydroxybenzyl)‐2,2′‐dimethyl‐1,3‐propanediamine (LDMHH2), and bis‐N,N′‐[1‐(2‐hydroxyphenyl)ethyl]‐1,3‐propanediamine (LACHH2) with NiII ions in the presence of pseudo halides (OCN, SCN and N3). The complexes were characterized with the use of elemental analyses, IR spectroscopy, and thermal analyses. The molecular structure of one of the complexes was obtained by single‐crystal X‐ray diffraction. The obtained complexes are mononuclear, and a pseudo halide molecule is attached. One of the oxygen atoms of the ligand is in phenolate and the other was in phenol form. According to the thermogravimetry results, it was thought that the pseudo halide thermally detaches from the structure as hydropseudo halide. In azide‐containing complexes an endothermic reaction was observed although the azide group usually decomposes with an exothermic reaction.  相似文献   

19.
The glass bead is a new biochip support material for immobilization biomolecules, due to its independence and convenient rearrangement. In order to optimize the immobilization efficiency of oligonucleotides onto glass beads and obtain the highest hybridization efficiency, three commonly used coupling strategies have been studied for covalently attaching oligonucleotides onto large glass beads. Glass beads with 250 μm diameter were amino-silaned with 2% 3-aminopropyltrimethoxysilane (APTMS) and then reacted separately with glutaraldehyde, succinic anhydride and 1,4-phenylene diisothiocyanate (PDITC) to derive CHO beads, COOH beads and isothiocyanate-modified beads (NCS-Beads) accordingly. Afterwards, amino-terminal oligonucleotides were covalently attached onto the surface of beads achieved by three strategies mentioned above. The immobilization efficiency were studied to compare the three strategies, which turned out 2.55 × 1013 probes/cm2 for CHO-Beads, 3.21 × 1013 probes/cm2 for COOH beads and 6.68 × 1013 probes/cm2 for NCS beads. It meant that the immobilization efficiency based on NCS beads was most acceptable. And the method, developed by attaching amino-terminal oligonucleotides onto these cyanate active beads, could be regarded as an efficient one for immobilizing oligonucleotides onto a solid surface. Moreover, in this paper, the hybridization properties of NCS bead-based oligonucleotides have been studied by employing Cy5-tagged complementary oligonucleotides. It was found that the high probe density NCS beads led to low hybridization efficiency possibly due to the existence of steric crowding. In addition, the equilibrium binding constant K A was determined by employing Langmuir isotherm model, which was 7.0 × 106 M−1 for NCS beads with the density of 6.7 × 1013 probes/cm2. Furthermore, it only took 60 min to reach hybridization equilibrium. These large microspheres (>100 μm) can be employed in the mesofluidic systems for automated heterogeneous assays.  相似文献   

20.
Fluorogenic hybridization probes allow the detection of RNA and DNA sequences in homogeneous solution. Typically, one target molecule activates the fluorescence of a single probe molecule. This limits the sensitivity of nucleic acid detection. Herein, we report a self-immolative molecular beacon (iMB) that escapes the one-target/one-probe paradigm. The iMB probe includes a photoreductively cleavable N-alkyl-picolinium (NAP) linkage within the loop region. A fluorophore at the 5’-end serves, on the one hand, as a reporter group and, on the other hand, as a photosensitizer of a NAP-linker cleavage reaction. In the absence of target, the iMB adopts a hairpin shape. Quencher groups prevent photo-induced cleavage. The iMB opens upon hybridization with a target, and both fluorescent emission as well as photo-reductive cleavage of the NAP linker can occur. In contrast to previous chemical amplification reactions, iMBs are unimolecular probes that undergo cleavage leading to products that have lower target affinity than the probes before reaction. Aided by catalysis, the method allowed the detection of 5 pm RNA target within 100 min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号