首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hemispherical ultramicroelectrodes (2.5–12.5 μm in radius) fabricated from silver or amalgamated copper, gold or platinum were used in the cathodic stripping of various anions. A comparison is presented between the results obtained using electrodes of a conventional size at slow sweep rates (ca. 100 mV s?1) and those obtained using ultramicroelectrodes under fast linear-sweep conditions (ca. 700 V s?1). Problems in maintaining reproducible electrode surfaces under various experimental conditions are discussed. In addition, the benefit of using electrodes of microscopic dimensions is illustrated by their utilization in the analysis of very small volumes of analyte that result from a solvent back-extraction process.  相似文献   

2.
A pair of interdigitated ultramicroelectrodes (UMEs) is used to electrochemically detect a weak reductor (dopamine) in the presence of a stronger one (K(4)[Fe(CN)(6)]). In the mixture of both reductors, one of the two interdigitated electrodes (the generator electrode) is used to oxidize both species at 700 mV vs. Ag/AgCl, followed by subsequent (selective) reduction of the oxidized dopamine at 400 mV. A regenerated dopamine molecule can thus be oxidized several times (redox cycling) and enable selective detection even in the presence of the stronger reductor. In order to obtain high redox cycling efficiency, we designed and realized platinum electrodes with widths of 2 and 4 microm and spacing of 2 microm, which gave redox cycling efficiencies of 9 and 4 respectively. Using this electrode design, a dopamine/K(4)[Fe(CN)(6)] selectivity of 2 could be obtained.  相似文献   

3.
The electrooxidation of carbon monoxide and methanol on Pt-coated Au nanoparticles attached to 3-aminopropyl trimethoxysilane-modified indium tin oxide electrodes was examined as a function of Pt film thickness and Au particle coverage. For the electrodes with medium and high Au particle coverages, the CO stripping peak position shifts to more negative values with increasing Pt film thickness, from ca. 0.8 V (vs Ag/AgCl) at 1 ML to 0.45 V at 10 ML. Accompanying this peak potential shift is the sharpening of the peak width from more than 150 to 65 mV. For the electrode with low Au particle coverage, similar peak width narrowing was also observed, but the peak potential shift is much smaller, from 0.85 V at 1 ML of Pt to 0.65 V at 10 ML. These observations are compared with the CO oxidation on bulk Pt electrodes and on Pt films deposited on bulk Au electrodes. The film-thickness-dependent CO oxidation is explained by d band theory in terms of strain and ligand effects, the particle size effect, and the particle aggregation induced by Pt film growth. Corresponding to the increasing CO oxidation activity, the current density of methanol oxidation grows with the Pt film thickness. The peak potential and current density reach the same values as those obtained on a polycrystalline bulk Pt electrode when more than 4 ML of Pt is deposited on the Au particle electrodes with a particle coverage higher than 0.25. These results suggest that it is feasible to reduce Pt loading in methanol fuel cells by using Pt thin films as the anode catalyst.  相似文献   

4.
A new procedure to detect peroxide formation quantitatively during oxygen reduction using the rotating ring-disc electrode (RRDE) technique is described. The new procedure is called the Cyclic Potential Ring Measurement (CPRM) method. In this technique, the ring electrode is continuously cycled between 850 mV and 1600 mV versus RHE at a sweep rate of 500 . Concurrently, the disc electrode is stepped potentiostatically in the potential region of oxygen reduction. For oxygen reduction on gold, the CPRM technique indicates 100% peroxide formation in the first wave region whereas the conventional RRDE technique indicated only 20 to 30% peroxide formation. The continuous sweeping of the ring electrode in the CPRM technique regenerates continuously a fresh, active ring electrode surface that is less susceptible to interference from low levels of impurities in the solution. Consequently, the CPRM technique provides a more stable, reproducible ring surface for peroxide detection than the conventional technique.To insure that the potential sweeping of the ring does not affect its response adversely, we measured the electrode collection coefficient with a model system (Fe(CN)3−6/Fe(CN)4−6), in which low levels of solution impurities would not interfere. The collection coefficient measured using the CPRM and conventional techniques with the model system agreed within ±2.4%.  相似文献   

5.
原位电化学拉曼光谱是一种重要的光谱电化学技术.基于超微电极的原位电化学拉曼光谱将拉曼光谱反映的结构信息与电极表面的电化学过程从实验上严格对应和关联,为深刻理解电化学反应机理提供依据.本文综述了采用超微电极作为工作电极的原位电化学拉曼光谱的研究方法和应用进展,总结了应用超微电极作为工作电极开展电化学拉曼光谱实验的方法和具有表面增强拉曼活性的超微电极制备方法,展示了如何利用在超微电极表面获得的拉曼光谱与界面电化学过程的严格关联研究单个锌颗粒电化学氧化过程、吡啶分子在Au电极表面的电化学吸附过程,以及如何利用该技术能以高的信噪比和灵敏度同时测量光电流与分子反应这一特性研究对巯基苯胺选择性光氧化反应.采用超微电极作为工作电极的原位电化学拉曼光谱技术极大拓展了拉曼光谱技术的研究范围,有望成为探索(光)电化学反应的有力工具.  相似文献   

6.
A technique for polishing the surface of carbon-fiber ultramicroelectrodes to a bevelled tip is described which simplifies electrode preparation. The bevelled surface has an active area that is more than twice that of a disk electrode fabricated from the same material. This results in larger faradaic currents. It is found that the chronoamperometric current at these electrodes is equal to that calculated for a disk of equivalent area to the elliptical area of the electrode. While the area is increased, the residual current is not, and thus quantitative applications of these electrodes as in vivo probes as facilitated. Furthermore, the bevelled tip results in an electrode that minimizes tissue damage during insertion into brain tissues.  相似文献   

7.
In the 1950s and 1960s fundamental developments in electrochemical methods included voltammetry and low signal techniques. A generation later, the discovery of the unusual properties of ultramicroelectrodes has opened new possibilities of analyzing electrode processes. The changes in mass transport conditions bring about extremely high current densities at ultramicroelectrodes, whereas the currents themselves become very small. This little-noticed phenomenon allows for many electroanalytical applications that are not possible with conventional electrodes, especially experiments in solutions with very low electrolyte concentrations, in nonpolar solvents, in solids, and even in gases. In addition, two factors— changes in the experimental time scale at low scan rates because of the size of the electrode, and insignificant iR effects at very high scan rates—make it possible to study very fast homogeneous and heterogeneous electrode processes.  相似文献   

8.
A large electroactive particle, 1.3 μm in radius, is synthesized by coating the polystyrene latex with electroactive polyaniline film. It is monodispersed in size. Since the outside layer is electrically conductive, the electrode reaction propagates over the surface rapidly when it comes in contact locally with the electrode. Thus, it can be regarded as a model of a single redox particle, possessing the huge number of electrons, n. The colloidal suspension of the latex in HCl shows a steady-state anodic wave at a microelectrode. The value of n is 5.6×1010 by means of bulk electrolysis. The limiting current after eliminating noise of the electric power source exhibits periodical oscillation with 14 Hz. No periodicity is found in the blank or in Fe(CN)64− solution. The oscillation indicates collision of the particle to the electrode to cause the oxidation. The product of the current by the period is much smaller than the redox charge on the single particle.  相似文献   

9.
Based on the theories of conventional electrodes, as well as the properties of microdisk electrode, the i-E equations for chronoamperometry at disk microelectrode for reversible, quasi-reversible and irreversible systems are derived. Steady-state voltammograms for the oxidation of [Fe(CN)6]4- , Fe2+ and ascorbic acid were measured at a series of microdisk electrodes with different radii. The conventional log-plot shows that oxidations of [Fe(CN)6]4- and ascorbic acid are reversible and totally irreversible, respectively, but the oxidation of Fe2+ is reversible at larger radius microdisk electrodes and quasi-reversible at smaller radius microdisk electrodes. The application of the log-plot to the voltammograms yielded a straight line, its slope allows us to evaluate the charge transfer coefficient and the intercept gives values of the electron transfer rate constant.  相似文献   

10.
超微电极具有常规电极无法比拟的优良的电化学特性.超微电极包括单超微电极和超微电极阵列,单超微电极响应电流较小,一般仪器难以检测;而超微电极阵列除具有单超微电极的特点外,还能增加测量时的响应电流,有利于仪器检测.其中的叉指型超微带电极阵列(IDA)具有产生-收集效应,可提高检测的灵敏度,实现低浓度测量[1~4].将微电子技术和微细加工技术应用于化学和生物传感技术已引起关注,利用微细加工技术可以实现传感器的微型化、集成化和智能化;减少测量使用的样品量;使传感器的敏感元件具有确定的形状和尺寸,提高测量结果的一致性.本文用多…  相似文献   

11.
Polyelectrolyte brushes with electroactive counterions provide an effective platform for surfaces with electrochemically switchable wetting properties. Polycationic poly(2-(methacryloyloxy)-ethyl-trimethyl-ammonium chloride) (PMETAC) brushes with ferricyanide ions ([Fe(CN)6] 3-) were used as the electrochemically addressable surface. After a negative potential of -0.5 V was applied to the [Fe(CN)6](3-)-coordinated PMETAC brushes, the [Fe(CN)6](3-) species were reduced to [Fe(CN)6](4-), and the surface became more hydrophilic. By application of alternating negative and positive potentials, PMETAC brushes were switched reversibly between the reduced state ([Fe(CN)6]4-) and oxidized state ([Fe(CN)6]3-), resulting in reversible changes in water contact angles. The time required for a complete contact angle change can be tuned from 1 to 20 s, by changing the brush thickness and the concentration of supporting electrolyte. We present an electrochemical brush transport model that includes the electrochemical reaction at the charged electrode and describes ion transport through the brush phase covering the electrode. The model quantitatively describes the response of the contact angle (hydrophilicity) to the applied voltage as a function of background ionic strength and brush thickness, supporting the proposed mechanism of ion transport through the brush and electrochemical reaction at the electrode. A typical diffusion constant for ferricyanide in a PMETAC brush of any thickness in 5 mM KCl supporting electrolyte was found to be 2 x 10(-15) m2 s(-1), 5 to 6 orders of magnitude smaller than its bulk solution value.  相似文献   

12.
13.
Kinetic parameters of nano-structured iron catalyst in Fischer-Tropsch synthesis (FTS) were studied in a wide range of synthesis gas conversions and compared with conventional catalyst. The conventional Fe/Cu/La catalyst was prepared by co-precipitation of Fe and Cu nitrates in aqueous media and Fe/Cu/La nanostructure catalyst was prepared by co-precipitation in a water-in-oil micro-emulsion. Nano-structured iron catalyst shows higher FTS activity. Kinetic results indicated that in FTS rate expression, the rate constant (k) increased and adsorption parameter (b) decreased by decreasing the catalyst particle size from conventional to nano-structured. Since increasing in the rate constant and decreasing in the adsorption parameter affected the FTS rate in parallel direction, the particle size of catalyst showed complicated effects on kinetic parameters of FTS reaction.  相似文献   

14.
We report on the optical properties of single isolated silver nanodisks and pairs of disks fabricated by electron beam lithography. By systematically varying the disk size and surface separation and recording elastic scattering spectra in different polarization configurations, we found evidence for extremely strong interparticle interactions. The dipolar surface plasmon resonance for polarization parallel to the dimer axis exhibited a red shift as the interdimer separation was decreased; as expected from previous work, an extremely strong shift was observed. The scattering spectra of single particles and pairs separated by more than one particle radius can be well described by the coupled dipole approximation (CDA), where the particles are approximated as point dipoles using a modified dipole polarizability for oblate spheroids. For smaller particle separations (d < 20 nm), the simple dipole model severely underestimates the particle interaction, indicating the importance of multipolar fields and finite-size effects. The discrete dipole approximation (DDA), which is a finite-element method, describes the experimental results well even at d < 20 nm, including particles that have metallic bridges.  相似文献   

15.
丛燕青  李哲  张轶  王齐  徐谦  伏芳霞 《催化学报》2012,33(8):1402-1409
采用阴极电沉积和阳极氧化法制备了Fe2O3改性TiO2纳米管(Fe2O3/TiO2-NTs)电极,运用场发射扫描电子显微镜、透射电子显微镜、X射线衍射和紫外-可见漫反射光谱等手段对其进行了表征,考察了其光电化学性能,并研究了复合电极光电催化降解甲基橙染料废水的反应性能.结果表明,Fe2O3的负载成功地将TiO2-NTs的光响应区间拓宽到可见光区域,Fe2O3/TiO2-NTs复合电极的光电流密度达到TiO2-NTs电极的3倍.在光电催化反应中,Fe2O3/TiO2-NTs复合电极对甲基橙的脱色效果明显优于TiO2-NTs电极,以Fe2O3/TiO2-NTs为阳极,光照5min,甲基橙溶液的脱色率可达90%以上.  相似文献   

16.
催化剂的有效因子与操作温度和颗粒尺寸有很大关系,随反应温度的升高,催化剂的有效因子在减小。催化剂颗粒直径对有效因子的影响结果表明,当d_p<4.0mm时,有效因子随颗粒直径的减小而急剧增加,而当d_p介于4.0和10.0mm时,有效因子随颗粒直径的增大而减小的幅度明显降低。有效因子的计算值与实测值相近,用于反应器数学模型计算的床层温度分布和CO转化率与中间试验结果呈良好的一致性。  相似文献   

17.
利用循环伏安扫描法制备了磷钼酸(H3PMo12O40)修饰的铂电极.在制备修饰电极时,随着扫描次数的增加,磷钼酸的氧化还原峰电流增大,但最终获得稳定的重现性好的磷钼酸修饰的铂电极.通过循环伏安法研究了该修饰电极对二甲醚氧化的电催化反应.结果表明,与未修饰的铂电极相比,磷钼酸修饰的铂电极电催化氧化二甲醚的起始氧化电位负移50 mV,氧化峰电位负移35 mV,氧化峰电流密度提高了1.86倍,这表明修饰电极的电催化活性有了很大的提高.同时,电位负扫时,二甲醚在425 mV(vsSCE)处出现氧化峰,表明二甲醚在修饰电极上的电氧化机理可能发生了改变.实验还发现,制备修饰电极时,降低扫速会提高还原物质杂多蓝的吸附量,但过多的修饰物质会降低铂的活性位数目,反而降低了对二甲醚氧化的电催化作用.  相似文献   

18.
So far, almost all electrochemistry theories are based on an assumption that the size of an electroactive molecule is negligible. However, this assumption will not be true if the size of an electroactive molecule is comparable to or smaller than the size of an electrode being used to study the electroactive molecule. In this paper, the electrochemical behaviors of ferrocenated gold nanoparticles have been studied using an electrode with a radius that is smaller than the radius of the particle. This allows for the observation of phenomena which cannot be explained by conventional electrochemical theories. Also, stochastic collision current, which cannot be observed on a macro‐ or microelectrode, can be directly observed.  相似文献   

19.
A laser ablation-inductively coupled plasma-mass spectrometric (LA-ICPMS) technique utilizing a titanium-sapphire (TiS) femtosecond laser (fs-laser) has been developed for elemental and isotopic analysis. The signal intensity profile, depth of the ablation pit and level of elemental fractionation were investigated in order to evaluate the analytical capability of the present fs-laser ablation-ICPMS technique. The signal intensity profile of (57)Fe, obtained from iron sulfide (FeS(2)), demonstrated that the resulting signal intensity of (57)Fe achieved by the fs-laser ablation was almost 4-times higher than that obtained by ArF excimer laser ablation under a similar energy fluence (5 J/cm(2)). In fs-laser ablation, there is no significant difference in a depth of the ablation pit between glass and zircon material, while in ArF laser ablation, the resulting crater depth on the zircon crystal was almost half the level than that obtained for glass material. Both the thermal-induced and particle size-related elemental fractionations, which have been thought to be main sources of analytical error in the LA-ICPMS analysis, were measured on a Harvard 91500 zircon crystal. The resulting fractionation indexes on the (206)Pb/(238)U (f(Pb/U)) and (238)U/(232)Th (f(U/Th)) ratios obtained by the present fs-laser ablation system were significantly smaller than those obtained by a conventional ArF excimer laser ablation system, demonstrative of smaller elemental fractionation. Using the present fs-laser ablation technique, the time profile of the signal intensity of (56)Fe and the isotopic ratios ((57)Fe/(54)Fe and (56)Fe/(54)Fe) have been measured on a natural pyrite (FeS(2)) sample. Repeatability in signal intensity of (56)Fe achieved by the fs-laser ablation system was significantly better than that obtained by ArF excimer laser ablation. Moreover, the resulting precision in (57)Fe/(54)Fe and (56)Fe/(54)Fe ratio measurements could be improved by the fs-laser ablation system. The data obtained here clearly demonstrate that, even with the fundamental wavelength (NIR operating at 780 nm), the fs-laser ablation system has the potential to become a significant tool for in-situ elemental and isotopic analysis of geochemical samples including heavy minerals and metallic materials.  相似文献   

20.
研究和开发高性能的钙钛矿型混合电导氧化物是目前高温固体氧化物电解池(SOEC)氧电极材料研究的热点.选择BaxSr1-xCo0.8Fe0.2O3-δ系列材料,通过对材料的容差因子、关口半径、晶格自由体积等计算,以及对平均键能、B位离子的变价能力、催化活性等方面的分析,确定了A位最佳配比.对优化出的Ba0.5Sr0.5Co0.8Fe0.2O3-δ材料的电化学性能进行了研究,并与自制的La0.2Sr0.8MnO3(LSM)氧电极材料进行了比较.结果表明:850℃下阳极极化阻抗(ASR)仅为0.07Ωcm2,远低于LSM;将其应用于SOEC氧电极进行高温电解制氢试验,产氢速率为相同条件下LSM的2.3倍,说明将Ba0.5Sr0.5Co0.8Fe0.2O3-δ用作SOEC阳极材料具有很好的应用前景.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号