首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
A novel method has been developed to successfully synthesize Fe3O4 nanoparticles with tunable size and morphology supported on shells of poly(o-Toluidine)(POT) hollow microspheres. The as-prepared POT/Fe3O4 nanoparticle composites can be used as novel and magnetic-responsive catalyst supports to produce highly efficient and recyclable noble metal catalysts. The size of Fe3O4 nanoparticles supported on shells of POT hollow microspheres can be tuned from 4 to 12 nm by changing the concentration of Fe ions. The roles of the doping acid of POT and Zeta potentials of Fe3O4 nanoparticles and POT in the formation of the POT/Fe3O4 nanoparticle composites were discussed. Furthermore, gold nanoparticles that were supported on the as-synthesized POT/Fe3O4 nanoparticle composites have been achieved by utilizing the reactivity of POT towards Au ions. The size of gold nanoparticles can be tuned by altering the concentration of HAuCl4. Finally, the catalytic activity of the obtained POT/Fe3O4/Au composites for 4-nitrophenol (4NP) reduction is investigated. The results demonstrate that such magnetic-responsive polymer-supported gold nanoparticles can be easily recovered and reused five times still remains high catalytic performance, which indicate their potential applications in the field of catalysis.  相似文献   

2.
Potentiometric ion sensors were prepared from the conjugated polymer poly(3-octylthiopene) (POT). The influence of additional membrane components, including silver 7,8,9,10,11,12-hexabromocarborane (AgCB11H6Br6) and potassium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (KTpFPB) as lipophilic salts, and [2.2.2]p,p,p-cyclophane as silver ionophore, was studied. The membrane components were dissolved in chloroform and membranes were prepared by solution casting on glassy carbon disk electrodes. For comparison, POT-based potentiometric sensors were also prepared by galvanostatic electrosynthesis of POT from the 3-octylthiophene monomer. All the POT-based ion sensors fabricated by solution casting show Nernstian or slightly sub-Nernstian response to Ag+, even those based only on POT without any additional membrane components. The potentiometric response of electrochemically polymerized POT depends on the film thickness and the doping anion incorporated in the conducting polymer during polymerization. It is of particular importance that chemically synthesized undoped POT (without any additives) shows a sensitive and selective potentiometric response to Ag+ ions although UV-vis results show that POT remains in its undoped form, i.e., POT is not oxidized by Ag+. This indicates that undoped POT can exhibit good sensitivity and selectivity to Ag+ also in the absence of metallic silver in the polymer film. In this case, the potentiometric response is related to interactions between Ag+ and the conjugated polymer backbone. Presented at the 4th Baltic Conference on Electrochemistry, Greifswald, 13–16, 2005  相似文献   

3.
Highly refractive, heat-resistant BaTiO3 nanocomposite films were fabricated via in situ polymerization to homogeneously disperse barium titanate (BT) nanoparticles into polyimide (PI) matrix. BT nanoparticles surface-modified with O-phosphorylethanol phthalimide (PPHI) were employed to the in situ polymerization in which condensation reactions of a diphthalic anhydride and a diamine were conducted to form the prepolymer of poly(amic acid) (PAA) that was thermally imidized in the following step. The nanoparticles surface-modified were added to PAA solution at different times in the polymerization to examine the effect of PAA molecular weight on the refractive index (RI) of the nanocomposite films, which indicated that relatively low molecular weights (<10,000) of PAA formed at the point of nanoparticle addition was appropriate for enhancement of nanocomposite RI. An additional treatment of chemical imidization using acetic acid anhydride and pyridine, which was followed by the thermal imidization, was performed to examine the effect of polyimide structure on RI of nanocomposite films. The RI of nanocomposite films with excellent thermal stability could be successfully enhanced to n = 1.88 by the chemical imidization.  相似文献   

4.
Gold nanoparticle–polypyrrole nanocomposite film was electrochemically deposited in a single-step polymerization of pyrrole in the presence of 3-mercaptopropionic acid (MPA)-capped gold nanoparticles (GNPs) and p-toluenesulfonic acid (pTSA) on the surface of an indium tin oxide (ITO)-coated glass plate. The carboxyl functional groups surrounding the GNPs within the polymer matrix were utilized for the immobilization of urease enzyme through carbodiimide coupling reaction for the construction of a Urs/GNP(MPA)–PPy/ITO-glass bioelectrode for urea detection in Tris–HCl buffer. The resulting bioelectrode film was characterized by atomic force microscopy (AFM), high-resolution transmission electron microscopy (HRTEM), contact angle measurement, Fourier transform infrared spectroscopy (FTIR), and electrochemical techniques. The potentiometric response of the bioelectrode made of polymer nanocomposite films of two different thicknesses prepared at 100 and 250 mC cm?2 charge densities, respectively, was studied towards the urea concentration in Tris–HCl buffer (pH 7.4). The thin polymer nanocomposite film-based bioelectrode prepared at 100 mC cm?2 charge density exhibited a comparatively good potentiometric response than a thick 250 mC cm?2 charge density film with a linear range of urea detection from 0.01 to 10 mM with a sensitivity of 29.7 mV per decade.  相似文献   

5.
The hydrophobic conductive polymer, poly(3-octylthiophene) (POT), is considered as uniquely suited to be used as an ion-to-electron transducer in solid contact (SC) ion-selective electrodes (ISEs). However, the reports on the performance characteristics of POT-based SC ISEs are quite conflicting. In this study, the potential sources of the contradicting results on the ambiguous drift and poor potential reproducibility of POT-based ISEs are compiled, and different approaches to minimize the drift and the differences in the standard potentials of POT-based SC ISEs are shown. To set the potential of the POT film, it has been loaded with a 7,7,8,8-tetracyanoquinodimethane (TCNQ/TCNQ·?) redox couple. An approximately 1:1 TCNQ/TCNQ·?ratio in the POT film has been achieved through potentiostatic control of the potential of the redox couple-loaded conductive polymer. It is hypothesized that once the POT film has a stable, highly reproducible redox potential, it will provide similarly stable and reproducible interfacial potentials between the POT film and the electron-conducting substrate and result in SC ISEs with excellent reproducibility and potential stability. Towards this goal, the potentials of Au, GC, and Pt electrodes with drop-cast POT film coatings were recorded in KCl solutions as a function of time. Some of the POT films were loaded with TCNQ and coated with a K+-selective membrane. The improvement in the potential stabilities and sensor-to-sensor reproducibility as a consequence of the incorporation of TCNQ in the POT film and the potentiostatic control of the TCNQ/TCNQ·?ratio is reported.  相似文献   

6.
In this work, gold nanoparticles lower than 10?nm were prepared in an aqueous medium using two charged silsesquioxanes, the propylpyridinium chloride and propyl-1-azonia-4-azabicyclo[2.2.2]octane chloride, as stabilizer agents which revealed to be water-soluble. This stabilization method is innovative allowing thin films containing gold nanoparticles to be obtained, and it was used for the first time in the preparation of carbon paste electrodes (CPEs). The charged silsesquioxanes were characterized by liquid 13C NMR. The gold nanoparticle/silsesquioxane systems were characterized by ultraviolet–visible spectroscopy (UV–Vis) and transmission electron microscopy. In sequence, they were immobilized on silica matrix coated with aluminum oxide. The resulting solid materials designated as Au-Py/AlSi and Au-Db/AlSi were characterized by infrared spectroscopy and N2 adsorption/desorption isotherms. The results showed that the gold nanoparticle/silsesquioxane systems are strongly adhered to the surface-forming thin films. The Au-Py/AlSi and Au-Db/AlSi materials were used to prepare CPEs for the electrooxidation of nitrite (NO 2 ? ) using cyclic voltammetry and differential pulse voltammetry. The Au-Py/AlSi and Au-Db/AlSi CPEs showed high sensitivity and detection limits of 71.87 and 53.66?μA?mmol–1?L and 1.3 and 3.0?μmol?L–1, respectively.  相似文献   

7.
Gold nanoparticles, especially positron‐emitter‐ labeled gold nanostructures, have gained steadily increasing attention in biomedical applications. Of the radionuclides used for nanoparticle positron emission tomography imaging, radiometals such as 64Cu have been widely employed. Currently, radiolabeling through macrocyclic chelators is the most commonly used strategy. However, the radiolabel stability may be a limiting factor for further translational research. We report the integration of 64Cu into the structures of gold nanoparticles. With this approach, the specific radioactivity of the alloyed gold nanoparticles could be freely and precisely controlled by the addition of the precursor 64CuCl2 to afford sensitive detection. The direct incorporation of 64Cu into the lattice of the gold nanoparticle structure ensured the radiolabel stability for accurate localization in vivo. The superior pharmacokinetic and positron emission tomography imaging capabilities demonstrate high passive tumor targeting and contrast ratios in a mouse breast cancer model, as well as the great potential of this unique alloyed nanostructure for preclinical and translational imaging.  相似文献   

8.
Inverse opal films with unique optical properties have potential as photonic crystal materials and have stimulated wide interest in recent years. Herein, iridescent hybrid polystyrene/nanoparticle macroporous films have been prepared by using the breath‐figure method. The honeycomb‐patterned thin films were prepared by casting gold nanoparticle‐doped polystyrene solutions in chloroform at high relative humidity. Highly ordered hexagonal arrays of monodisperse pores with an average diameter of 880 nm are obtained. To account for the observed features, a microscopic phase separation of gold nanoparticles is proposed to occur in the breath‐figure formation. That is, individual gold nanoparticles adsorb at the solution/water interface and effectively stabilize condensed water droplets on the solution surface in a hexagonal array. Alternatively, at high nanoparticle concentrations the combination of breath‐figure formation and nanoparticle phase separation leads to hierarchical structures with spherical aggregates under a honeycomb monolayer. The films show large features in both the visible and NIR regions that are attributed to a combination of nanoparticle and ordered‐array absorptions. Organic ligand‐stabilized CdSe/CdS quantum dots or Fe3O4 nanoparticles may be loaded into the honeycomb structure to further modify the films. These results demonstrate new methods for the fabrication and functionalization of inverse opal films with potential applications in photonic and microelectronic materials.  相似文献   

9.
In recent years, gold nanoparticles (Au‐NPs) have been taken into consideration in nanomedicine due to their excellent biocompatibility, chemical stability and promising optical properties. In this research, podophyllotoxin conjugated with gold nanoparticles (Au‐NPs‐POT) was synthesized and the conjugation of POT with Au‐NPs was confirmed using scanning electron microscopy, mass spectrometry and Fourier transform infrared spectroscopy. The anticancer effects of the product on preclinical models of lung, colon and breast cancers were investigated using MTT test. The analyses showed a direct dose–response relationship. It was found that higher concentrations of POT have more positive effects on the inhibition of cancer cell growth. At POT concentrations of 1, 2.5, 5, 7.5, 10, 15 and 20 ng ml?1, approximately 50% of the growth of colorectal, lung and breast cancer cell lines was inhibited, while similar results were obtained in the presence of 1, 2, 3, 4 and 5 μg ml?1 Au‐NPs‐POT. Au‐NPs‐POT exhibited the lowest cytotoxicity due to the presence of POT. The anticancer feature of Au‐NPs‐POT proved the potential to develop better anticancer therapeutics and to open new avenues for treatment of cancers.  相似文献   

10.
A simple and modular synthetic approach, based on miniemulsion polymerization, has been developed for the fabrication of composite polymer–metal nanoparticle materials. The procedure produces well‐defined composite structures consisting of gold, silver, or MnFe2O4 nanoparticles (~10 nm in diameter) encapsulated within larger spherical nanoparticles of poly(divinylbenzene) (~100 nm in diameter). This methodology readily permits the incorporation of multiple metal domains into a single polymeric particle, while still preserving the useful optical and magnetic properties of the metal nanoparticles. The morphology of the composite particles is retained upon increasing the inorganic content and also upon redispersion in organic solvents. Finally, the ability to tailor the surface chemistry of the composite nanoparticles and incorporate steric stabilizing groups using simple thiol‐ene chemistry is demonstrated. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1594–1606, 2010  相似文献   

11.
Poly(l-lactic acid)-TiO2 nanoparticle nanocomposite films were prepared by incorporating surface modified TiO2 nanoparticles into polymer matrices. In the process of preparing the nanocomposite films, severe aggregation of TiO2 nanoparticles could be reduced by surface modification by using carboxylic acid and long-chain alkyl amine. As a result, the nanocomposite films with high transparency, similar to pure PLA films, were obtained without depending on the amount of added TiO2 nanoparticles. A TEM micrograph of the nanocomposite films suggests that the TiO2 nanoparticles of 3-6 nm in diameter were uniformly dispersed in polymer matrices. Photodegradation of PLA-TiO2 nanoparticle nanocomposite films was also investigated. The results showed that nanocomposite films could be efficiently photodegraded by UV irradiation in comparison with pure PLA.  相似文献   

12.
Polymerization processes of two types ultrathin films containing polythienyl groups anchored to the substrate surface through siloxane bonds were investigated. When the oxidative polymerization on the Chemically Adsorbed (CA) monolayer prepared with 11-(3-thienylundecyl)trichlorosilane (TTS) was performed in the acetonitrile solution containing 3-octylthiophene monomer and FeCl3, the thienyl groups in the CA monolayer and the outer 3-octylthiophene monomers were polymerized each other along the directions of both in-plane and out-of-plane of the CA monolayer. On the other hand, when the oxidative polymerization was performed without the additive 3-octylthiophene monomer, the long conjugated linkage of the thienyl groups was not formed in the CA monolayer. The highest conductivity of the film prepared with the additive 3-octylthiophene of about 10 nm thickness was 10?2 S/cm.  相似文献   

13.
Surface‐confined atom transfer radical polymerization was used to prepare gold nanoparticle–poly(methyl methacrylate) core–shell particles at elevated temperature. First, gold nanoparticles were prepared by the one‐pot borohydride reduction of tetrachloroaurate in the presence of 11‐mercapto‐1‐undecanol (MUD). MUD‐capped gold nanoparticles were then exchanged with 3‐mercaptopropyltrimethoxysilane (MPS) to prepare a self‐assembled monolayer (SAM) of MPS on the gold nanoparticle surfaces and subsequently hydrolyzed with hydrochloric acid. The extent of exchange of MUD with MPS was determined by NMR. The resulting crosslinked silica‐primer layer stabilized the SAM of MPS and was allowed to react with the initiator [(chloromethyl)phenylethyl] trimethoxysilane. Atom transfer radical polymerization was conducted on the Cl‐terminated gold nanoparticles with the CuCl/2,2′‐bipyridyl catalyst system at elevated temperature. The rates of polymerization with the initiator‐modified gold nanoparticles exhibited first‐order kinetics with respect to the monomer, and the number‐average molecular weight of the cleaved graft polymer increased linearly with the monomer conversion. The presence of the polymer on the gold nanoparticle surface was identified by Fourier transform infrared spectroscopy and transmission electron microscopy. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3631–3642, 2005  相似文献   

14.
Gold nanoparticle is an important nanomaterial and has been investigated widely owing to its special physical and chemical property[1―5]. In recent years it has been found that the multiple-component nano- structure assembly containing metal, semiconduct…  相似文献   

15.
PMMA based nanocomposites filled with calcium carbonate nanoparticles (CaCO3) have been prepared by in situ polymerization approach. In order to improve inorganic nanofillers/polymer compatibility, PBA chains have been grafted onto CaCO3 nanoparticle surface. Morphological analysis performed on nanocomposite fractured surfaces has revealed that the CaCO3 modification induces homogeneous and fine dispersion of nanoparticles into PMMA as well as strong interfacial adhesion between the two phases. Mechanical tests have shown that both unmodified and modified CaCO3 are responsible for an increase of the Young's Modulus, whereas only PBA-grafted nanoparticles allow to keep unchanged impact strength, strongly deteriorated by adding unmodified CaCO3. Finally, the presence of CaCO3 nanoparticles significantly improves the abrasion resistance of PMMA also modifying its wear mechanism.  相似文献   

16.
姬相玲 《高分子科学》2013,31(9):1233-1241
A facile route to synthesize a new type of multifunctional nanocomposites is reported. Here, PDMAEMA (poly[2-(dimethylamino)ethyl] methacrylate) is a key macromolecule serving as a bridge between magnetic Fe2O3 nanoparticles and luminescent quantum dots. Both Fe2O3 nanoparticles and Ⅱ-Ⅵ semiconductor quantum dots with a narrow size distribution are synthesized through a two-phase thermal approach. Subsequently, the atom transfer radical polymerization (ATRP) technique was applied to prepare magnetic Fe2O3@PDMAEMA core-shell nanoparticles. The thickness of PDMAEMA shell can be easily controlled by adjusting the reaction time. Finally, the ligand exchange method was exploited to modify Ⅱ-Ⅵ quantum dot with amine-containing polymer of PDMAEMA, which led to quantum dot securely bound by Fe2O3@PDMAEMA core-shell nanoparticle to form a multifunctional nanocomposite. The resulting nanocomposite remains variable emission by tuning the Ⅱ-Ⅵ semiconductor type and particle size and shows Hc at 49 kA/m and Tb at 16 K from Fe2O3 nanoparticles. The self-assembled behavior for the resulting samples is also discussed.  相似文献   

17.
Poly(3,4‐ethylenedioxypyrrole) (PEDOP)–Ag and PEDOP–Au nanocomposite films have been synthesized for the first time by electropolymerization of the conducting‐polymer precursor in a waterproof ionic liquid, 1‐butyl‐1‐methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, followed by Ag/Au nanoparticle incorporation. That the Ag/Au nanoparticles are not adventitious entities in the film is confirmed by a) X‐ray photoelectron spectroscopy, which provides evidence of Ag/Au–PEDOP interactions through chemical shifts of the Ag/Au core levels and new signals due to Ag–N(H) and Au–N(H) components, and b) electron microscopy, which reveals Au nanoparticles with a face‐centered‐cubic crystalline structure associated with the amorphous polymer. Spectroelectrochemistry of electrochromic devices based on PEDOP–Au show a large coloring efficiency (ηmax=270 cm2 C?1, λ=458 nm) in the visible region, for an orange/red to blue reversible transition, followed by a second, remarkably high ηmax of 490 cm2 C?1 (λ=1000 nm) in the near‐infrared region as compared to the much lower values achieved for the neat PEDOP analogue. Electrochemical impedance spectroscopy studies reveal that the metal nanoparticles lower charge‐transfer resistance and facilitate ion intercalation–deintercalation, which manifests in enhanced performance characteristics. In addition, significantly faster color–bleach kinetics (five times of that of neat PEDOP!) and a larger electrochemical ion insertion capacity unambiguously demonstrate the potential such conducting‐polymer nanocomposites have for smart window applications.  相似文献   

18.
Linear polysilanes, [{PhHSi}x{Ph(RSCH2CH2CH2)Si}1?x]n [R = n‐dodecyl ( 1 ), n‐hexyl ( 2 ), n‐butyl ( 3 )], have been synthesized and their reactivity with HAuCl4·3H2O (Polymer:Au = 10:1, RT, toluene) examined to gain an insight into the role of polymer‐supported thioether groups in the stabilization of in situ generated gold nanoparticles (AuNPs). The method allows a simple approach for expeditious synthesis of assemblies of AuNPs comprising of well‐separated individual nanoparticles of average diameter 4.5 ± 1.9 nm. In this regard, polysilane 1 with dodecyl side chains serves as a superior matrix than 2 and 3 and confers long shelf‐life stability to the nanoparticle assembly. The structural attributes are preserved in Au–Pd bimetallic nanoparticles which have been synthesized from the polymer‐gold nanoassembly. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

19.
Anionic polymerization technique has been utilized to synthesize a bilaterally sulfur‐functionalized polystyrene, SCH3‐polystyrene‐SH. The synthesis scheme consists of (1) initiation of 4‐vinylbenzylmethyl sulfide with sec‐butyllithium to form a living sulfur‐containing initiator, (2) polymerization of styrene, and (3) termination of growing polystyrene chain with ethylene sulfide. The resulting bilaterally sulfur‐functionalized polystyrene is used to make polystyrene/gold nanoparticles (AuNPs) nanocomposite with AuNPs formed in situ in polymer solution through reduction of AuClO4. The effects of the polymer/Au molar ratio as well as the molecular weight of polymer on the size and dispersion of formed AuNPs have been studied, and the superiority of bilaterally functionalized polymer to unilaterally functionalized polymer has been demonstrated. The polystyrene/AuNPs composite has been characterized by GPC, 1H‐NMR, 13C‐NMR, EDS, TEM, UV‐Vis, and DSC. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1268–1277  相似文献   

20.
New pyrrolylalkanethiolate-stabilized gold and palladium nanoparticles have been prepared: electrochemical polymerization of their metal nanoparticles and their TEMPO-derivatized metal nanoparticles gave the remarkably stable poly(pyrrole metal nanoparticle) films on metal electrodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号