首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Flat nano-island films prepared by wet-chemical deposition were investigated with attenuated total reflection infrared (ATR-IR) spectroscopy and scanning electron microscopy (SEM) in order to analyze the correlation between film morphology and optical properties. Here we choose Au as representative coinage metal (Au, Ag, Cu) that shows strong structure-dependent surface-enhanced infrared absorption (SEIRA). Infrared spectra of octadecanethiol monolayers on films of different stages of morphologic development show effects that are characteristic for SEIRA, such as enhanced vibrational signals, Fano-type line shape, and adsorbate induced baseline shifts. Their extent was found to be strongly dependent on the structural details and the strongest enhancement occurs at the percolation threshold of the two-dimensional island system. Also films beyond percolation show significant enhancement due to residual nanoholes that are acting as hotspots.  相似文献   

2.
Surface-enhanced infrared absorption (SEIRA)-active Au/Ti bilayer films sputter deposited on Si substrates have been prepared by an electrochemical annealing (ECA) treatment for the first time. The application of Au/Ti bilayer films on Si substrates to the spectroscopic technique is a promising alternative to the conventional technique using directly deposited Au films on Si substrates, offering excellent adhesive durability of the deposited metal films. However, Au/Ti bilayer films have never been selected for the spectroscopy technique because the films in the as-prepared state exhibit relatively smooth surface morphology: the excitation of the localized surface plasmon is vital to achieving SEIRA enhancements but could hardly be observed on the smooth morphology. It is shown by ex situ scanning tunneling microscopy measurements that the unfavorable smooth morphology of the as-prepared Au/Ti bilayer films can be modified by the ECA treatment to a reasonably rough, island-structure morphology similar to that of the conventional SEIRA-active Au films. In situ infrared absorption spectroscopy of adsorbed sulfate anions has been conducted on the Au/Ti bilayer film both before and after ECA treatment. The spectroscopy measurements demonstrate that the SEIRA activity of the film after being subjected to the treatment is significantly improved so that the technique could detect adsorbates on the film electrodes even with the submonolayer coverage. As an additional benefit, the ECA treatment has brought about a substantial increase in the fraction of Au(111) domains on the polycrystalline Au film surfaces. Accordingly, this approach enables us to prepare SEIRA-active Au films having sufficient adhesion to the Si substrates as well as the highly preferred (111) orientation.  相似文献   

3.
In this paper we report a versatile and effective strategy to attain strong surface-enhanced infrared absorption by employing a sandwich system consisting of metal island films and self-assembled monolayers (SAMs) of 4-pyridinethiol. The observed larger enhancement factor stems from coupling of the electric fields induced by excitation of the surface plasmon resonance of the overlayer and underlayer Au island films, and from enhanced chemical interactions of the Au island films and the pyridine molecule in the sandwiched structures, compared to the corresponding SAM-Au configuration. Copyright 2001 Academic Press.  相似文献   

4.
Ultrathin gold films prepared by evaporation of sub-percolation layers (typically up to 10 nm nominal thickness) onto transparent substrates form arrays of well-defined metal islands. Such films display a characteristic surface plasmon (SP) absorption band, conveniently measured by transmission spectroscopy. The SP band intensity and position are sensitive to the film morphology (island shape and inter-island separation) and the effective dielectric constant of the surrounding medium. The latter has been exploited for chemical and biological sensing in the transmission localized surface plasmon resonance (T-LSPR) mode. A major concern in the development of T-LSPR sensors based on Au island films is instability, manifested as change in the SP absorbance following immersion in organic solvents and aqueous solutions. The latter may present a problem in the use of Au island-based transducers for biological sensing, usually carried out in aqueous media. Here, we describe a facile method for stabilizing Au island films while maintaining a high sensitivity of the SP absorbance to analyte binding. Stabilization is achieved by coating the Au islands with an ultrathin silica layer, ca. 1.5 nm thick, deposited by a sol-gel procedure on an intermediate mercaptosilane monolayer. The silica coating is prepared using a modified literature procedure, where a change in the reaction conditions from room temperature to 90 degrees C shortened the deposition time from days to hours. The system was characterized by UV-vis spectroscopy, ellipsometry, XPS, HRSEM, AFM, and cyclic voltammetry. The ultrathin silica coating stabilizes the optical properties of the Au island films toward immersion in water, phosphate buffer saline (PBS), and various organic solvents, thus providing proper conditions where the optical response is sensitive only to changes in the effective dielectric constant of the immediate environment. The silica layer is thin enough to afford high T-LSPR sensitivity, while the hydroxyl groups on its surface enable chemical modification for binding of receptor molecules. The use of silica-encapsulated Au island films as a stable and effective platform for T-LSPR sensing is demonstrated.  相似文献   

5.
The infrared and Raman spectra of solids and thin solid films of 6-nitrochrysene, its electronic spectra, and resonance Raman scattering (RRS) obtained with UV-laser excitation at 325 nm are reported. The vibrational assignment is supported by ab initio computations at the B3LYP/6-311G(d, p) level of theory. The molecular organization in nanometric films evaporated onto smooth metal surfaces of silver and copper was probed using reflection-absorption infrared spectroscopy (RAIRS). The results of the surface-enhanced Raman scattering (SERS) and surface-enhanced infrared absorption (SEIRA) obtained from nanometric films evaporated onto silver island films are also discussed. It was found that the molecule efficiently interacts with silver island film surfaces, and that the interaction leads to extensive photochemical reaction at the metal surface under laser illumination.  相似文献   

6.
Ultrathin gold island films evaporated on transparent substrates offer promising transducers for chemical and biological sensing in the transmission surface plasmon resonance (T-SPR) mode. In the present work, the applicability of T-SPR-based systems to biosensing is demonstrated, using a well-established biological model system. Au island films were evaporated on polystyrene slides and modified with a biotinylated monolayer via a multistep surface reaction, the latter assisted by the good adhesion of metal islands to polystyrene. The biotin-derivatized Au island film was then used as a biological recognition surface for selective sensing of avidin binding, distinguishing between specific and nonspecific binding to the substrate. Transduction of the binding event into an optical signal was achieved by T-SPR spectroscopy, using plasmon intensity measurements, rather than wavelength change, for maximal sensitivity and convenience. T-SPR spectroscopy of Au island films is shown to be an effective tool for monitoring the binding of biological molecules to receptor layers on the Au surface and a promising approach to label-free optical biosensing.  相似文献   

7.
通过置换反应在金属铝表面制备了表面没有任何保护剂且具有红外增强作用的钴岛膜,用SEM、XRD和表面增强红外光谱对其形貌和性质进行表征。 结果表明,铝片上沉积出的钴呈岛状结构,钴岛膜由二次钴粒子和一次钴粒子通过密堆积的方式构成;首次发现具有这种特殊结构的钴对吸附于其表面的有机分子的红外吸收光谱有较大的增强作用,用此钴岛膜对1 mmol/L的对巯基苯甲酸的红外光谱研究时得到很好的红外增强信号,使得表面增强红外光谱可以用于痕量分析、检测。  相似文献   

8.
We report on the finding that absorption of citrate-stabilized Au nanoparticles into microgel/polyelectrolye multilayer thin films results in an increase in the resistance of those films to strain-induced damage in the dry state while maintaining the remarkable self-healing properties of the films following rehydration. Films were fabricated atop elastomeric poly(dimethylsiloxane) substrates by a centrifuge-assisted layer-by-layer technique using anionic hydrogel microparticles (microgels) and cationic linear polymers as the building blocks. Gold nanoparticles were embedded into swollen hydrogel films by a simple immersion method wherein the Coulombic interactions between the anionic Au particles and the polycation are likely important. After drying, the mechanical properties of films were inferred from the observation of cracks/wrinkles formed during stretching of the elastomeric substrate. As-prepared (no Au) hydrogel films revealed the presence of damage perpendicular to the stretching direction (10% strain), as observed previously. However, Au nanoparticle-doped films displayed significantly reduced damage under identical stretching conditions while forming cracks and wrinkles under higher strains (20?C30%). Importantly, all films displayed excellent self-healing behavior upon rehydration regardless of Au content, suggesting that the nanoparticle toughening effect does not interfere with the film mobility required to achieve autonomic repair.  相似文献   

9.
Electroless gold island thin films are formed by galvanic replacement of silver reduced onto a tin-sensitized silica surface. A novel approach to create nanoparticle ensembles with tunable particle dimensions, densities, and distributions by thermal transformation of these electroless gold island thin films is presented. Deposition time is adjusted to produce monomodal ensembles of nanoparticles from 9.5 +/- 4.0 to 266 +/- 22 nm at densities from 2.6 x 1011 to 4.3 x 108 particles cm-2. Scanning electron microscopy and atomic force microscopy reveal electroless gold island film structures as well as nanoparticle dimensions, densities, and distributions obtained by watershed analysis. Transmission UV-vis spectroscopy reveals photoluminescent features that suggest ultrathin EL films may be smoother than sputtered Au films. X-ray diffraction shows Au films have predominantly (111) orientation.  相似文献   

10.
Infrared ellipsometry has been applied to determine the refractive index n and the absorption index k as well as the thickness of metal island films causing surface enhanced infrared absorption (SEIRA). The results from numerous films prepared in several campaigns are presented. For films of a nominal thickness of 6 nm, k is found to range from 0 to 3, while n ranges from 5 to 8. Among these two optical constants a close correlation is observed. Layers suitable for SEIRA exhibit an unusual spectral feature whose origin is explained.  相似文献   

11.
A method to quantify the composition of thin films using infrared spectroscopic ellipsometry (IRSE), supplemented by visible spectroscopic ellipsometry (VISSE), is proposed. Because ellipsometry measures the thickness and optical constants of a surface layer simultaneously, the absorption coefficient of the film as a function of wavelength can be obtained. Using values of the absorption coefficients for the pure components of the film, the percentages (mol.% or wt.%) of each component in the film can be calculated. The method is demonstrated in a study of the hydration of oxide films on electropolished aluminium and the anodically formed barrier oxide film. The IRSE technique shows that hydration of the films by immersion in boiling water results in the conversion of aluminium oxide to pseudoboehmite. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

12.
Evaporation of ultrathin (1.3-10 nm nominal thickness) gold films onto quartz or mica leads to the formation of a layer of rather uniform gold islands on the transparent support. The morphology of ultrathin gold island films of various thicknesses was studied by using atomic force microscopy (AFM) and scanning electron microscopy (SEM) imaging. The surface plasmon (SP) absorption characteristic of such films is highly sensitive to the surrounding medium, with the plasmon band changing in intensity and wavelength upon binding of various molecules to the surface. The binding process can be monitored quantitatively by measuring the changes in the gold SP absorption, by using transmission UV/Vis spectroscopy. The method, termed transmission surface plasmon resonance (T-SPR) spectroscopy, is shown to be applicable to both chemically and physically adsorbed molecules, in liquid or gas phase, with measurements carried out either ex situ or in situ (real-time measurements) using a variety of molecular probes. Binding to a preformed molecular layer on the Au surface produces a similar response, suggesting the possible use of T-SPR for selective sensing. The sensitivity of T-SPR spectroscopy in detecting molecular binding to the gold depends strongly on the film preparation conditions, and may be comparable to that obtained in surface plasmon resonance (SPR) sensing.  相似文献   

13.
采用浸渍-提拉法制备了一系列石墨烯氧化物(GO)薄膜,并通过X射线衍射(XRD),扫描电镜(SEM),傅里叶变换红外光谱,紫外-可见吸收光谱和光电化学测量等技术对样品进行了表征.在GO电极上观察到阴极光电流,且光电流密度受薄膜的厚度影响.GO薄膜电极厚度为27nm时,光电流密度为0.25μA·cm-2.此外,GO电极的光电响应还受紫外光照影响,随着紫外光照时间的延长,阴极光电流逐渐减小.该工作提供了简便的通过控制薄膜厚度或紫外光照时间来控制GO薄膜半导体光电化学性能的方法.  相似文献   

14.
A new phenomenon of enhanced IR absorption has been revealed recently and reported in the present paper. In referring to the surface enhanced IR absorption (SEIRS)[l], which is limited to systems of particular molecules (PNBA, etc.) adsorbed on island films of Au, Ag metals, the newly discovered phenomenon is of significant importance in fundamental studies as well as in applications of electrocatalysis and surface analysis, since nanostructured transition metals or alloys were involved in this phenomenon.  相似文献   

15.
Gold nanoparticle and gold/semiconductor nanocomposite thin films have been deposited using aerosol assisted chemical vapor deposition (CVD). A preformed gold colloid in toluene was used as a precursor to deposit gold films onto silica glass. These nanoparticle films showed the characteristic plasmon absorption of Au nanoparticles at 537 nm, and scanning electron microscopic (SEM) imaging confirmed the presence of individual gold particles. Nanocomposite films were deposited from the colloid concurrently with conventional CVD precursors. A film of gold particles in a host tungsten oxide matrix resulted from co-deposition with [W(OPh)(6)], while gold particles in a host titania matrix resulted from co-deposition with [Ti(O(i)Pr)(4)]. The density of Au nanoparticles within the film could be varied by changing the Au colloid concentration in the original precursor solution. Titania/gold composite films were intensely colored and showed dichromism: blue in transmitted light and red in reflected light. They showed metal-like reflection spectra and plasmon absorption. X-ray photoelectron spectroscopy and energy-dispersive X-ray analysis confirmed the presence of metallic gold, and SEM imaging showed individual Au nanoparticles embedded in the films. X-ray diffraction detected crystalline gold in the composite films. This CVD technique can be readily extended to produce other nanocomposite films by varying the colloids and precursors used, and it offers a rapid, convenient route to nanoparticle and nanocomposite thin films.  相似文献   

16.
The aggregation and reaction of 17,19-hexatriacontadiyne molecules are studied on a Au(111) surface. The molecular orientation and arrangement are elucidated by infrared reflection absorption spectroscopy (IRAS) and scanning tunneling microscopy (STM). A vapor-deposited monolayer and a multilayered film formed by adsorption from the solution provide IRA spectra with bands due to the antisymmetric and symmetric stretching of methylenes in the gauche conformation. After the adsorbed film is rinsed with the solvent, however, the spectrum loses the gauche bands and is characterized by the enhanced C-H(distal) and C-H(proximal) stretching bands, which means that all-trans molecules are laid flat. Only STM images for the rinsed film display columnar structures on the herringbones of the reconstructed Au(111) surface; the alkyl chain direction is found to be parallel to the Au atom row. The results indicate that an ordered monolayer is formed first at the liquid-solid interface, and then, disordered overlayers with the gauche conformation are grown but removed by a rinse. Upon exposure to UV light, thus obtained monomer columns are converted into oligomers with flexible backbones and an increased gauche population in the alkyl chains, which resemble red phase polydiacetylenes in LB films.  相似文献   

17.
The infrared absorption enhancement phenomenon in the normal configuration of vacuum‐evaporated metal films on a transparent substrate is known to depend not only on the metal film morphology but also on the local structures of metal particles. To date, however, few studies have examined the effect of local structure on the phenomenon. Size distributions of islands and gaps, along with the volume fractions of Ag in thin films, were measured using scanning electron microscopy as a function of film thickness. The local structure of Ag nano clusters deposited on silicon substrates was investigated using a total conversion electron yield X‐ray absorption fine structure (XAFS) method at the Ag K‐edge. We observed a correlation between the electromagnetic field intensity at the surface as evaluated by IR measurement and the coordination numbers evaluated by XAFS. We found that the film morphology had a greater effect on resonant and nonresonant contributions than did the local structure of a particle. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
Au nanoparticles dispersed ZrO2 thin films were prepared from two precursors HAuCl4·4H2O and ZrOCl2·8H2O in air. The structural properties and size of Au particle in ZrO2 film were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The surface analysis with atomic force microscopy (AFM) showed the effect of monoethanolamine on preventing the migration of Au particles to the surface. The absorption peak of Au particles by the surface plasma resonance was observed and the red shift of absorption peak was discussed.  相似文献   

19.
聚丙烯表面接枝改性络合金的研究   总被引:1,自引:1,他引:0  
探索了一种通过聚丙烯(PP)改性来络合金金属的新途径.首先在PP膜上经紫外光引发实施丙烯酸的接枝聚合反应,得到表面带—COOH基团的改性PP膜;再用负离子开环聚合的方法在改性后的PP膜上接枝尼龙6.上述处理后的膜表面含有大量O、N的功能基团,故可将此膜用于对溶液中金的络合.利用ATR、SEM、XPS等技术对改性及络合进行了表征.实验结果表明,此方法制备的PP膜对金的络合效果明显.  相似文献   

20.
A simple method is described for preparing ultrathin films of carbon-supported platinum nanoparticles on gold and other substrates for examination by electrochemical infrared reflection–absorption spectroscopy (EC-IRAS) in which the anomalous “anti-absorbance” properties commonly observed for metal particle arrays can be minimized as well as controlled. The tactic involves physical deposition as an aqueous suspension, followed by drying and thorough rinsing. The Pt monolayer-level films prepared by this means exhibit largely positive unipolar absorbance bands for CO adlayers, whereas an anomalous inverted band component appears for thicker films, especially those featuring high Pt nanoparticle loadings. These findings demonstrate the value of the film preparation tactic for exploring the electrocatalytic properties of C/Pt materials by using combined electrochemical and EC-IRAS measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号