首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The molecular structures and vibrational properties of 1H‐imidazo[4,5‐b]pyridine in its monomeric and dimeric forms are analyzed and compared to the experimental results derived from the X‐ray diffraction (XRD), infrared (IR), and Raman studies. The theoretical data are discussed on the basis of density functional theory (DFT) quantum chemical calculations using Lee–Yang–Parr correlation functional (B3LYP) and 6‐31G(d,p) basis. This compound crystallizes in orthorhombic structure, space group Pna21(C2v9) and Z = 4. The planar conformation of the skeleton and presence of the N H···N hydrogen bond was found to be characteristic for the studied system. The temperature dependence of IR and Raman modes was studied in the range 4–294 K and 8–295 K, respectively. The normal modes, which are unique for the imidazopyridine derivatives are identified. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
Polarized FT‐IR, Raman, neutron scattering (IINS), and UV‐Vis‐NIR spectra of 2‐methyl‐4‐nitroaniline (MNA) crystal plates, powder, and solutions were measured in the 10–50 000 cm−1 range. The FT‐IR spectrum of deuterated MNA (DMNA) in KBr pellet, the Raman spectrum of the DMNA powder as well as the EPR spectrum of the MNA powder were also recorded. Complete assignments of bands to normal vibrations have been proposed. Density functional theory (DFT) calculations of wavenumbers and potential energy distribution (PED) have been performed to strengthen the assignments. The analysis of vibrational and electronic spectra has revealed vibronic couplings in MNA molecules in solutions and in crystals. In the polarized FT‐IR spectra of the crystal five unusually large bands are observed in MIR and NIR regions. Their origin is discussed in terms of N H···O, C H···O, C H···H N hydrogen bonds, intermolecular charge transfers, electrostatic interactions, and ion radicals formation in the crystal. The role of a methyl group introduction to 4‐nitroaniline is analyzed. The crystal structure of MNA at the room temperature was re‐investigated. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
The presence of intramolecular NHN hydrogen bond in 4‐R‐quinoline‐2‐(NR′‐carboxamides) was investigated by AIM methodology. Values of electron density, elipticity, and total energy density at the bond critical point of H···N in amides were compared with respective values of H···O in their N‐oxides. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
We report on the infrared (IR) and Raman studies of the three isostructural quasi‐one‐dimensional cation radical salts of 3,4‐dimethyl‐tetrathiafulvalene (o‐DMTTF)2X (X = Cl, Br, and I), which all exhibit metallic properties at room temperature and undergo transitions to a semiconducting state in two steps: a soft metal‐to‐semiconductor regime change in the temperature region Tρ = 5–200 K and then a sharp phase transition at about TMI = 50 K. Polarized IR reflectance spectra (700–16 000 cm−1) and Raman spectra (50–3500 cm−1, excitation λ = 632.8 nm) of single crystals were measured as a function of temperature (T = 5–300 K) to assess the eventual formation of a charge‐ordered state below 50 K. Additionally, the temperature dependence of the IR absorption spectra of powdered crystals in KBr discs was also studied. The Raman spectra and especially the bands related to the CC stretching vibration of o‐DMTTF provide unambiguous evidence of uniform charge distribution on o‐DMTTF down to the lowest temperatures, without any modification below 50 K. However, the temperature dependence of Raman spectra indicates a regime change below about 200 K. Temperature dependence of both electronic dispersion and vibrational features observed in the IR spectra also clearly confirms the regime change below about 200 K and shows the involvement of C H···X hydrogen bonds in the electronic localization; some spectral changes can be also related with the phase transition at 50 K. Additionally, using density functional theory methods, the normal vibrational modes of the neutral o‐DMTTF0 and cationic o‐DMTTF+ species, as well as their theoretical IR and Raman spectra, were calculated. The theoretical data were compared with the experimental IR and Raman spectra of neutral o‐DMTTF molecule. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
X‐ray diffraction (XRD) studies have shown that 2‐piperidyl‐5‐nitro‐6‐methylpyridine, C11H15N3O2, undergoes a structural phase transition at T = 240 K. The room temperature structure is tetragonal, space group I41/a, with the unit‐cell dimensions a = 13.993(2) and c = 23.585(5) Å. The pyridine ring takes trans conformation with respect to the piperidine unit. While pyridine is well ordered, the piperidine moiety shows apparent disorder resulting from a libration about the linking N C bond. The low‐temperature phase is monoclinic, space group I2/a. Contraction of the unit‐cell volume by 2.3% at 170 K enables the C H···O linkage between the molecules of the neighbouring stacks. As result, the asymmetric unit becomes bi‐molecular. The thermal librations of the piperidine and methyl groups become considerably reduced at 170 K and nearly fully reduced at about 100 K. The IR spectra and polarised Raman spectra agree with the X‐ray structure and confirm the disorder effect on the piperidine ring. The assignment of the bands observed was made on the basis of DFT chemical quantum calculations. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
The near infrared Fourier‐transform (NIR FT)‐Raman and Fourier‐transform infrared (FT‐IR) spectroscopies supported by HF/6‐31G(d) computations have been employed to derive equilibrium geometry, vibrational wavenumbers and the first hyperpolarizability of the nonlinear optical (NLO) material, L ‐arginine nitrate (LAN) hemihydrate. The reasonable NLO efficiency, predicted for the first time in this novel compound, has been confirmed by Kurtz–Perry powder second harmonic generation (SHG) experiments. The changes in the atomic charge distribution among different groups due to the presence of strong electronegative atoms and the shrinking of N O bonds of nitrate anion and C N bonds of guanidyl group have been analyzed. The splitting of the carboxylate stretching modes, blue shifting of methine vibrations and the electronic effects such as backdonation and induction on the methylene hydrogen atoms have also been examined in detail. The intense low wavenumber H‐bond Raman vibrations due to electron–phonon coupling and nonbonded interactions in making the LAN molecule NLO active have been discussed based on the vibrational spectral features. The natural bond orbital (NBO) analysis and HF computations confirm the occurrence of strong intra‐ and intermolecular N H·O and O H·O ionic hydrogen bonding between charged species providing the noncentrosymmetric structure in the LAN crystal. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
Hydrogen-bonding interactions play an important role in the rational design of crystal systems with desirable architectures. The novel thiosemicarbazone derivative described herein, namely (E)-N-(4-ethylphenyl)-2-(4-hydroxybenzylidene)thiosemicarbazone, C16H17N3OS, (I), was prepared and characterised by 1H NMR, IR and single-crystal X-ray crystallography techniques. The compound is arranged in the lattice by O–H···S and N–H···S bonded polymeric ribbons that extend along the crystal b-axis, and the intermolecular N–H···S hydrogen bonds formed R2 2(8) ring motifs. More importantly, C–H···π interaction stabilises the supramolecular structure of (I). Hirshfeld surface and their associated two-dimensional fingerprint plot analyses are presented to illustrate the supramolecular connectivity in the solid state. The result shows that the short H···H contacts is dominated in the total Hirshfeld surface. As well as we report on nπ* interactions in thiosemicarbazone derivatives by using the reduced density gradient function and natural bond orbital analyses. Besides, molecular electrostatic potential (MEP) and frontier molecular orbital (FMO) analysis of the title compound are also investigated by theoretical calculations.  相似文献   

8.
Vibrational spectral analysis of the hydrogen‐bonded nonlinear optical (NLO) material p‐bromo acetanilide (PBA) was carried out using NIR‐FT‐Raman and FT‐IR spectroscopy. Ab initio molecular orbital computations were performed at HF/6‐31G (d) level to derive equilibrium geometry, vibrational wavenumbers, intensities and first hyperpolarizability. The lowering of the imino stretching wavenumbers suggests the existence of strong intermolecular N H···O hydrogen bonding, which was substantiated by the natural bond orbital (NBO) analysis. The vibrational spectra confirm that the charge‐transfer interaction between the  NHCOCH3 group and—Br through phenyl ring is responsible for simultaneous strong IR and Raman activation of the ring mode 8a. Vibrational analysis indicates that the lowering of stretching wavenumbers of methyl group due to electronic effects simultaneously caused by induction and hyperconjugation is due to the presence of the oxygen atom. The presence of blue‐shifting H‐bonds of CH stretching wavenumbers, simultaneous activation of carbonyl stretching mode, the strong activity of low‐wavenumber H‐bond stretching vibrations and the role of intramolecular charge transfer in making the molecule NLO active have been analyzed on the basis of the vibrational spectral features. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
The existence of C–H···F–C hydrogen bonds in the complexes of trifluoromethane and cyclic molecule (oxirane, cyclobutanone, dioxane, and pyridine) has been experimentally proven by Caminati and co-workers. This study presents a theoretical investigation on these C–H···F–C hydrogen bonds at B97D/6-311++G** and MP2/6-311++G** levels, in terms of C–H vibrational frequency shifts, atoms in molecules characteristics, and the bonding feature of C–H···F–C hydrogen bonds. It is found that in three important aspects, there are significant differences in properties between C–H···F–C and conventional hydrogen bonds. The C–H···F–C hydrogen bonds show a blueshift in the C–H vibrational frequencies, instead of the X–H normal redshift in X–H···Y conventional hydrogen bonds. The natural bond orbital (NBO) analyses show that σ and p types of lone pair orbitals of the F atom to an antibonding σ*H–C orbital form a dual C–H···F–C hydrogen bond. Such a dual hydrogen bonding leads to the proton acceptor directionality of the C–H···F–C hydrogen bond softer. Our studies also show that the Laplacian of the electron density (▽2ρBCP) is not always a good criterion for hydrogen bonds. Therefore, we should not recommend the use of the Laplacian of the electron density as a criterion for C–H···F–C hydrogen bonds.  相似文献   

10.
In this report, we extended the works of Rizzato et al. [Angew. Chem. Int. Ed. 49, 7440 (2010)] on the nature of O–H···Pt hydrogen bond in trans-[PtCl2(NH3)(N–glycine)]·H2O(1·H2O) complex, by computational study of O–H···Pt interaction in [NBu4][Pt(C6F5)3(8-hydroxyquinaldine)], with emphasis on charge transfer effect in this interaction of platinum(II) and hydrogen atom. According to the crystallographic geometry reported by José María Casas et al., [NBu4][Pt(C6F5)3(8-hydroxyquinaldine)] possesses one O–H···Pt hydrogen bridging interaction, similar to the case in trans-[PtCl2(NH3)(N–glycine)]·H2O(1·H2O) complex. On the basis of topological criteria of electron density, we characterised this O–H···Pt interaction. Charge transferred between platinum(II) and σ*O–H orbital in this complex was calculated by using NBO method. The stabilised energy associated to charge transfer was estimated using a direct proportionality, that is 2–3 eV per electron transferred. Charge transfer effects in O–H···Pt hydrogen bonds were studied for these two complexes. Our results indicate that the interaction of O–H···Pt is closed–shell in nature with significant charge transfer, and that charge transfer effect is not negligible in the interaction of O–H···Pt. The second conclusion is different from the result of Rizzato et al.  相似文献   

11.
Raman spectra of dumontite were measured at 298 and 77 K. Observed bands were attributed to the stretching and bending vibrations of uranyl and phosphate units and OH stretching vibrations of water molecules. U–O bond lengths in uranyls and approximate O–H···O bond lengths were calculated. The values of the U–O bond lengths are in agreement with the data from the single crystal structure analysis of dumontite. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
The FT‐IR and FT‐Raman spectra of sodium salt of 4‐hydroxy‐3[1‐(4‐nitrophenyl)‐3‐oxobutyl]‐2H‐1‐benzopyran‐2‐one (acenocoumarol sodium salt) in solid phase have been recorded and analyzed. The optimization geometry, intramolecular hydrogen bonding, and harmonic vibrational wavenumbers of acenocoumarol sodium salt have been investigated with the help of B3LYP density functional theory (DFT) methods. The infrared and Raman spectra were predicted theoretically from the calculated intensities. Natural bond orbital (NBO) analysis indicates the presence of C H···O hydrogen bonding in the molecule. The first static hyperpolarizability of the molecule has been computed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Self‐assembled organic–inorganic [C6H14N]PbI3 crystals were synthesized. The crystal structure consists of one‐dimensional semiconductor chains formed by infinite PbI6 face‐sharing octahedra aligned along the a‐axis. The organic cations are linked to the inorganic chains by N H· · ·I hydrogen bonds and act as insulator barriers. The vibrational properties of [C6H14N]PbI3 were studied using polarized Raman scattering and infrared (IR) absorption. The observed Raman and IR spectral features were identified by comparison with the vibrational properties of homologous compounds and with the vibrational wavenumbers calculated using the ab initio PM3 method. Moreover, the photoluminescence and diffuse reflectance of [C6H14N]PbI3 single crystals, along with the UV‐Vis absorption of spin‐ coated films, were measured. A strong green‐blue luminescence due to radiative recombinations of 1D excitons is observed. The Stokes shift is estimated at 70 meV. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
Vibrational spectral analysis was carried out for 4‐methoxy‐2‐methyl benzoic acid (4M2MBA) by using Fourier transform infrared (FT‐IR) (solid, gas phase) and FT‐Raman spectroscopy in the range of 400–4000 and 10–3500 cm−1 respectively. The effects of molecular association through O H···O hydrogen bonding have been described by the single dimer structure. The theoretical computational density functional theory (DFT) and Hatree‐Fock (HF) method were performed at 6–311++G(d,p) levels to derive the equilibrium geometry, vibrational wavenumbers, infrared intensities and Raman scattering activities. The scaled theoretical wavenumbers were also shown to be in good agreement with experimental data. The first‐order hyperpolarizability (β0) of this novel molecular system and related properties (β, α0 and Δα) of 4M2MBA are calculated using the B3LYP/cc‐pvdz basis set, based on the finite‐field approach. A detailed interpretation of the infrared and Raman spectra of 4M2MBA is reported. The theoretical spectrograms for FT‐IR and FT‐Raman spectra of the title molecule were also constructed and compared with the experimental one. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
The host–guest interaction of p‐sulfonatocalix[4]arene (p‐SC4) with aromatic amino acids (AAs) and two proteins has been studied using UV–Vis absorption, fluorescence, and theoretical methods. Spectral studies supported by binding constant and calculated binding energy (BE) values show that p‐SC4 binds more strongly with tyrosine compared with other AAs. The application of Bader's theory of atoms in molecule shows the involvement of various types of noncovalent interactions in the formation of the host–guest complexes. Both tyrosine and histidine have strong electrostatic interaction with the sulfonato group and other two AAs have dominant π?π interaction with the aromatic rings of calixarene. In addition, the role of C?H···O, C?H···π and lone pair···π (lp···π) interactions in the stabilization of p‐SC4‐AA complexes has also been realized from the atoms in molecule analysis. The electron density at the bond critical points varies with the calculated BEs and trend in BEs is in good agreement with the experimental binding constant values. The work has been extended to the binding of p‐SC4 with proteins, bovine serum albumin and ovalbumin. Ovalbumin exhibits stronger binding with p‐SC4 than bovine serum albumin. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Gas‐phase structure, hydrogen bonding, and cation–anion interactions of a series of 1‐(2‐hydroxyethyl)‐3‐methylimidazolium ([HOEMIm]+)‐based ionic liquids (hereafter called hydroxyl ILs) with different anions (X = [NTf2], [PF6], [ClO4], [BF4], [DCA], [NO3], [AC] and [Cl]), as well as 1‐ethyl‐3‐methylimizolium ([EMIm]+)‐based ionic liquids (hereafter called nonhydroxyl ILs), were investigated by density functional theory calculations and experiments. Electrostatic potential surfaces and optimized structures of isolated ions, and ion pairs of all ILs have been obtained through calculations at the Becke, three‐parameter, Lee–Yang–Parr/6‐31 + G(d,p) level and their hydrogen bonding behavior was further studied by the polarity and Kamlet–Taft Parameters, and 1H‐NMR analysis. In [EMIm]+‐based nonhydroxyl ILs, hydrogen bonding preferred to be formed between anions and C2–H on the imidazolium ring, while in [HOEMIm]+‐based hydroxyl ILs, it was replaced by a much stronger one that preferably formed between anions and OH. The O–H···X hydrogen bonding is much more anion‐dependent than the C2–H···X, and it is weakened when the anion is changed from [AC] to [NTf2]. The different interaction between [HOEMIm]+ and variable anion involving O–H···X hydrogen bonding resulted in significant effect on their bulk phase properties such as 1H‐NMR shift, polarity and hydrogen‐bond donor ability (acidity, α). Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
Bis(pyrrol‐2‐ylmethyleneamine) ligands and their mononuclear monomeric and dinuclear dimeric self‐assembly complexes with Cu(II) were investigated by means of IR and Raman spectroscopies and density functional theory. The ground‐state geometries were calculated by using the Becke Lee Yang Parr composite exchange‐correlation functional (B3LYP) and a combined basis set (LanL2DZ for Cu; 6–31G(d) for C, H, N), and they were compared with the single‐crystal X‐ray diffraction (XRD) structures. The DFT‐calculated Cu N bond lengths are generally higher by 0.001–0.040 Å than those determined through XRD. The vibrational spectra were also calculated at the same level of theory for the optimized geometries. The calculated wavenumbers were scaled by a uniform scaling factor and compared with the experimental fundamentals. The predicted spectra are in good agreement with the experimental ones with the deviations generally less than 30 cm−1. In comparison with the spectra of the ligands, the coordination effect shifts the υ(CN) wavenumber by about 50 cm−1 toward a lower value. Because of the weak intermolecular C H···Cu hydrogen bond, the Cu N stretching mode is shifted toward a lower wavenumber. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
Infrared spectra at 300 and 77 K and Raman spectra at 300 K of the valpromide (Vpd), N‐substituted derivatives, N‐ethylvalpromide (Etvpd), N‐isopropylvalpromide (Ipvpd) and the N,N‐disubstituted derivative, N,N‐dimethylvalpromide (Dmvpd) with antiepileptic activity, have been measured and analyzed with results derived from computational chemistry calculation. In agreement with theoretical predictions, experimental data indicate that while in Etvpd, Dmvpd and Ipvpd there are four different conformational co‐existing components (Etvpd: TTCG+, TCCG, TTTC, G+G+C G+; Dmvpd: TTCC, GTTA+, G+ATC, G+AC A+; Ipvpd: TTCT, TCCT, TCCC, G TTT) in the Vpd there are only three distinct stable conformations of C1 symmetry group: TTC, TCT, G+G+T. Based on the accuracy of the B3LYP calculation, with the 6‐31 + G** basis set estimated by comparison between the predicted values of the vibrational modes and the available experimental data, we performed a structural and vibrational study of the amide group in the Vpd and their derivatives. We found that small nonplanarity deviations of C(O)N backbone induce significant changes on the structural and spectroscopic properties. These are not compatible with the decreasing of the resonance effect as it is produced when the twisting around the C(O) N increases. From the Natural Bond Orbital (NBO) analysis the existence of stabilizing electrostatic interactions of type C H···O/N and C H···H N/C, which induce significant structural changes and a complex electronic redistribution of charge on the π‐system in those structures becomes evident. We view this as a consequence of the filled electron density change Lewis‐type NBOs type lpO1, 2, lpN1, σ(C H)N acyl and empty non‐Lewis NBOs type σ*(C H)N acyl, σ*N H. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
The experimental and theoretical study on the structures and vibrations of 5‐fluoro‐salicylic acid and 5‐chloro‐salicylic acid (5‐FSA and 5‐ClSA, C7H5FO3 and C7H5ClO3) is presented. The Fourier transform infrared spectra (4000–400 cm−1) and the Fourier transform Raman spectra (4000–50 cm−1) of the title molecules in the solid phase were recorded. The molecular structures, vibrational wavenumbers, infrared intensities, Raman intensities and Raman scattering activities were calculated for a pair of molecules linked by the intermolecular O H···O hydrogen bond. The geometrical parameters and energies of 5‐FSA and 5ClSA were obtained for all eight conformers/isomers from density functional theory (DFT) (B3LYP) with 6‐311++G(d,p) basis set calculations. The computational results identified the most stable conformer of 5‐FSA and 5‐ClSA as the C1 form. The complete assignments were performed on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. The spectroscopic and theoretical results were compared with the corresponding properties for 5‐FSA and 5‐ClSA monomers and dimer of C1 conformer. The optimized bond lengths, bond angles and calculated wavenumbers showed the best agreement with the experimental results. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Fourier transform microwave spectrum of cyclopentylamine, c–C5H9NH2 has been recorded, and seven transitions have been assigned for the most abundant conformer, and the rotational constants have been determined: A = 4909.46(5), B = 3599.01(4), and C = 2932.94(4). From the determined microwave rotational constants and ab initio MP2(full)/6‐311 + G(d,p) predicted structural values, adjusted r0 parameters are reported with distances (Å): rCα–Cβ = 1.529(3), rCβ–Cγ = 1.544(3), rCγ–Cγ = 1.550(3), rCα–N = 1.470(3), and angles (°) ∠CCN = 108.7(5), ∠CβCαCβ = 101.4(5), and τCβCαCβCγ = 42.0(5). The infrared spectra (4000–220 cm−1) of the gas have been recorded. Additionally, the variable temperature (−60 to −100 °C) Raman spectra of the sample dissolved in liquefied xenon was recorded from (3800–50 cm−1). The four possible conformers have been identified, and their relative stabilities obtained with enthalpy difference relative to t‐Ax of 211 ± 21 cm−1 for t‐Eq ≥ 227 ± 22 cm−1 for g‐Eq ≥ 255 ± 25 cm−1 for g‐Ax. The percentage of the four conformers is estimated to be 53% for the t‐Ax, 11 ± 1% for t‐Eq, 20 ± 2% for g‐Ax and 16 ± 2% for g‐Eq at ambient temperature. The conformational stabilities have been predicted from ab initio calculations by utilizing several different basis sets up to aug‐cc‐pVTZ from both MP2(full) and density functional theory calculations by the B3LYP method. Vibrational assignments have been provided for the observed bands for all four conformers, which are predicted by MP2(full)/6‐31G(d) ab initio calculations to predict harmonic force constants, wavenumbers, infrared intensities, Raman activities, and depolarization ratios for all of the conformers. The results are discussed and compared to the corresponding properties of some related molecules. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号