首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
Polyaniline coated conducting fabrics have been obtained by chemical oxidation of aniline by potassium peroxydisulfate on polyester fabrics. Two different acids have been employed to carry out the synthesis (HCl and H2SO4), obtaining the best results of conductivity with the latter one. The conducting fabrics have been characterized chemically by means of Fourier transform infrared spectroscopy with attenuated total reflection (FTIR-ATR), energy dispersive X-Ray (EDX) and X-ray photoelectron spectroscopy (XPS). The morphology of the coatings has been observed by means of scanning electron microscopy (SEM). The conducting properties of the fabrics have been measured by means of electrochemical impedance spectroscopy (EIS). The electrochemical characterization has been carried out by means of cyclic voltammetry (CV) and scanning electrochemical microscopy (SECM). The conducting fabrics have also shown electrochromic properties, changing its color from green yellowish at −1 V to dark green at +2 V. The durability of the coating has been evaluated by means of washing and rubbing fastness tests.  相似文献   

2.
采用溶胶-凝胶法, 用二氧化钼(MoO2)和C共同包覆Si/石墨粒子制备了Si/石墨/MoO2/C锂离子电池负极材料. 利用X射线衍射(XRD)、 扫描电子显微镜(SEM)、 透射电子显微镜(TEM)、 循环伏安(CV)和电化学阻抗(EIS)等分析了材料的形貌和性质. 结果表明, MoO2/C的共包覆在缓解材料体积膨胀的同时提高了材料的电子和离子电导率, 进而提高了材料的电化学性能. 复合材料的首次充电比容量为2494 mA·h/g, 首次库仑效率为72%, 经过100次循环后比容量为636.6 mA·h/g.  相似文献   

3.
一种新型凝胶态聚合物电解质的制备和性能   总被引:1,自引:0,他引:1  
采用一种新型胶联剂新戊二醇二丙烯酸酯(noepentyl glycol diacrylate, NPGDA)和聚偏氟乙烯-六氟丙烯(poly(vinylidene fluoride-co-hexafluoropropylene), PVDF-HFP), 液态电解液组成电解质混合溶液, 然后加入引发剂并加热引发聚合反应制备了一种具有互穿聚合物网络结构的凝胶态聚合物电解质, 可以用于制备聚合物锂离子二次电池. 考察了不同PVDF-HFP/NPGDA质量比对凝胶态聚合物电解质性能的影响. 结果表明, PVDF-HFP/NPGDA质量比可以影响凝胶态聚合物电解质的结构形貌、电化学特性以及聚合物锂离子二次电池的性能. 研究发现, 当m(PVDF-HFP)/m(NPGDA)=1:1时制备的凝胶态聚合物电解质具有较高的离子电导率和电化学稳定窗口, 室温下分别为6.99×10-3 S•cm-1和4.8 V(vs Li+/Li), 以其为电解质制备的聚合物锂离子二次电池具有较好的电化学性能.  相似文献   

4.
Zhang X  Gu A  Wang G  Huang Y  Ji H  Fang B 《The Analyst》2011,136(24):5175-5180
Porous Cu-NiO nanocomposites were successfully prepared by calcination of the Cu-Ni(OH)(2) precursor at 400 °C for 2 h. During the process of calcination, Ar was used to deaerate O(2). The structure and morphology of Cu-NiO were characterized by X-ray diffraction spectrum (XRD), energy dispersive X-ray analyses (EDX), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). Using porous Cu-NiO nanocomposites, a simple non-enzymatic amperometric sensor has been fabricated (Cu-NiO/GCE) and evaluated by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and typical amperometric method. When applied to detect glucose by the amperometric method, Cu-NiO/GCE produced an ultrahigh sensitivity of 171.8 μA mM(-1), with a low detection limit of 0.5 μM (S/N = 3). What's more, interference from common co-existing species, such as UA, AA, and fructose can be avoided at the sensor. Results in this study imply that porous Cu-NiO nanocomposites are promising nanomaterials for the enzyme-free determination of glucose.  相似文献   

5.
The direct electrochemical copolymerization of pyrrole and tetrahydrofuran in various monomer ratios was carried out by potentiostatic methods in nitromethane solution. The copolymer has been characterized using FT-IR, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermal gravimetrical analysis (TGA), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and elemental analysis. The results showed that the electrochemical oxidation of pyrrole and tetrahydrofuran comonomers generated true copolymers rather than blends of the two homopolymers. The copolymer showed a better flexibility than pure polypyrrole. The electrical conductivity of the copolymers increases with the amount of polypyrrole in the copolymer between the value of 1.69 S/cm and 0.71 S/cm.  相似文献   

6.
薛荣  阎景旺  田颖  衣宝廉 《物理化学学报》2011,27(10):2340-2346
尽管在二氧化锰/多壁碳纳米管(MnO2/MWCNTs)上获得了较高的比电容,低电导率仍是制约MnO2担载量或膜厚度提高的主要障碍.另一个问题是MnO2/MWCNTs的循环稳定性远低于活性炭.所以截止到目前这一新型材料的应用仍然受到很大的限制.本文采用原位还原的方法制备镧掺杂二氧化锰/多壁碳纳米管电化学超级电容器复合电极材料.分别通过透射电镜(TEM)、扫描电镜(SEM)、X射线衍射(XRD)和傅里叶变换红外(FTIR)光谱等技术对这些复合材料的形貌与结构进行了分析.采用循环伏安法、恒电流充放电法和交流阻抗法对其进行了电化学性能的研究.研究结果表明,通过还原MnO4-可以在MWCNTs上形成La掺杂MnO2复合材料.La掺杂降低了复合电极的电阻,这是因为La的引入可以增大MnO2的晶格缺陷,从而提高材料的电导率以及电极的电化学性能.因此La掺杂是克服MnO2本征导电性差的有效途径之一.掺杂La可以在不增大电极电阻的情况下提高MnO2的担载量或膜厚度.La掺杂的更重要的作用是使以MnO2/MWCNTs作电极的对称电化学超级电容器的循环性能得到显著改善.此外,La掺杂也使复合电极的比电容得到一定程度的提高.  相似文献   

7.
Molybdenum trioxide/polyaniline (MoO3/PANI) composite was prepared first by ion-exchange reaction between aniline (ANI) and dodecylamine (DDA) which was intercalated precursor, and then was formed under the polymerization of ANI within the interlayer space of MoO3 at 120 °C for 3 d in air. According to powder X-ray diffraction, scanning electron microscopy, thermogravimetric analysis, infrared spectroscopy and electrochemical testing, MoO3/PANI composite has layered structure, and its interlayer spacing is 1.127 nm. Moreover, it has high thermal stability with the compound and completes its weight loss at 751.9 °C. Electrochemical investigation shows that MoO3 is the major active substance in the MoO3/PANI electrode, and MoO3/PANI electrode demonstrates better conductivity and electrochemical activity than pure MoO3 electrode, attributed to the promotion of Li+ and/or electron transport. In addition, the alternating current impedance proves that if the resistance of MoO3/PANI electrode reduces apparently, the electrochemical activity will increase correspondingly, the same as the relationship between the ohmic resistance and the electrical conductivity.  相似文献   

8.
This article presents an overview of electrochemical sensors that employ nanomaterials and utilize electrochemical impedance spectroscopy for analyte detection. The most widely utilized nanomaterials in impedance sensors are gold (Au) nanoparticles and carbon nanotubes (CNTs). Au nanoparticles have been employed in impedance sensors to form electrodes from nanoparticle ensembles and to amplify impedance signals by forming nanoparticle-biomolecule conjugates in the solution phase. CNTs have been employed for impedance sensors within composite electrodes and as nanoelectrode arrays. The advantages of nanomaterials in impedance sensors include increased sensor surface area, electrical conductivity and connectivity, chemical accessibility and electrocatalysis.  相似文献   

9.
A novel electrochemical DNA biosensor based on graphene-three dimensional nanostructure gold nanocomposite modified glassy carbon electrode (G-3D Au/GCE) was fabricated for detection of survivin gene which was correlated with osteosarcoma. The G-3D Au film was prepared with one-step electrochemical coreduction with graphite oxide and HAuCl4 at cathodic potentials. The active surface area of G-3D Au/GCE was 2.629 cm2, which was about 3.8 times compared to that of a Au-coated GCE under the same experimental conditions, and 8.8 times compared to a planar gold electrode with a similar geometric area. The resultant nanocomposites with high conductivity, electrocatalysis and biocompatibility were characterized by scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). A “sandwich-type” detection strategy was employed in this electrochemical DNA biosensor and the response of this DNA biosensor was measured by CV and amperometric current–time curve detection. Under optimum conditions, there was a good linear relationship between the current signal and the logarithmic function of complementary DNA concentration in a range of 50–5000 fM with a detection limit of 3.4 fM. This new biosensor exhibited a fast amperometric response, high sensitivity and selectivity and has been used in a polymerase chain reaction assay of real-life sample with a satisfactory result.  相似文献   

10.
In the past 20 years the characterization of electroactive surfaces and electrode reactions by scanning probe techniques has advanced significantly, benefiting from instrumental and methodological developments in the field. Electrochemical and electrical analysis instruments are attractive tools for identifying regions of different electrochemical properties and chemical reactivity and contribute to the advancement of molecular electronics. Besides their function as a surface analytical device, they have proved to be unique tools for local synthesis of polymers, metal depots, clusters, etc. This review will focus primarily on progress made by use of scanning electrochemical microscopy (SECM), conductive AFM (C-AFM), electrochemical scanning tunneling microscopy (EC-STM), and surface potential measurements, for example Kelvin probe force microscopy (KFM), for multidimensional imaging of potential-dependent processes on metals and electrified surfaces modified with polymers and self assembled monolayers. Figure Electrochemical and electrical tools like scanning electrochemical microscopy, conductive atomic force microscopy, electrochemical scannig tunneling microscopy and Kelvin probe force microscopy (see figure) are powerful tools for the multidimensional imaging of potential-dependent processes on metals and electrified surfaces modified with polymers and self assembled monolayers.  相似文献   

11.
To improve the electrical conductivity of LiFePO4 cathode materials, the ZnO modified LiFePO4/C cathode materials are synthesized by a two-step process including solid state synthesis method and precipitation method. The structures and compositions of ZnO modified LiFePO4/C cathode materials are characterized and analyzed by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and energy dispersive spectroscopy, which indicates that the existence of ZnOhas little or no effect on the crystal structure, particles size and morphology of LiFePO4. The electrochemical performances are also characterized and analyzed with charge-discharge test, cyclic voltammetry and electrochemical impedance spectroscopy. The results show that the existence of ZnO improves the specific capability and lithium ion diffusion rate of LiFePO4 cathode materials and reduces the charge transfer resistance of cell, and the one with 3 wt% ZnO exhibits the best electrochemical performance.  相似文献   

12.
In this work, scanning electrochemical microscopy (SECM) measurements were employed to characterize the electrochemical activities on polished and as-received surfaces of the 2098-T351 aluminum alloy (AA2098-T351). The effects of the near surface deformed layer (NSDL) and its removal by polishing on the electrochemical activities of the alloy surface were evaluated and compared by the use of different modes of SECM. Confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM) were also employed to characterize the morphology of the surfaces. The surface chemistry was analyzed by X-ray photoelectron spectroscopy (XPS). The surface generation/tip collection (SG/TC) and competition modes of the SECM were used to study hydrogen gas (H2) evolution and oxygen reduction reactions, respectively. H2 evolution and oxygen reduction were more pronounced on the polished surfaces. The feedback mode of SECM was adopted to characterize the electrochemical activity of the polished surface that was previously corroded by immersion in a chloride-containing solution, in order to investigate the influence of the products formed on the active/passive domains. The precorroded surface and as-received surfaces revealed lower electrochemical activities compared with the polished surface showing that either the NSDL or corrosion products largely decreased the local electrochemical activities at the AA2098-T351 surfaces.  相似文献   

13.
尖晶石LiMn2O4纳米粉的合成 及其交流阻抗性能研究   总被引:1,自引:0,他引:1  
以LiOH和电解二氧化锰(EMD)为原料,葡萄糖为还原剂,制备了粒径为200nm左右的球状尖晶石LiMn2O4纳米粒子,并用X射线衍射(XRD)和扫描电镜(SEM)对样品进行了结构和形貌的表征.在循环伏安测试(CV)峰电位下研究了该材料嵌脱锂相变过程中的交流阻抗(EIS)图谱,并提出一种新的等效电路对EIS图谱进行拟合...  相似文献   

14.
An electrochemical capacitor utilizing a polyvinyl alcohol (PVA) and H4SiW12O40 (SiWA) solid polymer electrolyte was developed. The electrolyte was deposited via precursor solution coating followed by thermal pressing and exhibited an ionic conductivity of 0.01 S/cm. The electrolyte has also shown good stability and cycle life. The performance of the solid polymer electrolyte-based capacitor was characterized using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), and was compared to a similar capacitor with an aqueous electrolyte.  相似文献   

15.
研究了在PBS缓冲介质中,一种检测癌胚抗原的新型免标记免疫电化学传感器的制备,将石墨烯、二茂铁的高效催化及壳聚糖的优良生物相容性和成膜性、离子液体的导电性等优势充分结合构建了电化学免疫传感器。通过循环伏安法及交流阻抗对修饰的电极进行表征,在最优条件下,癌胚抗原的质量浓度在0.2~50.0 ng/mL的范围内与差分脉冲伏安法峰电流呈良好的线性关系,回归方程为Δi=0.38-1.31ρ,相关系数分别为0.9967,检测限为0.06 ng/mL,该传感器可用于人血清样品的测定。  相似文献   

16.
A new plasticized dual-phase polymer electrolyte (DPE) with enhanced phase compatibility based on Poly(MMA-g-PVC)/PMMA blends has been studied. For the DPE, PMMA is selectively impregnated with the lithium salt solution forming an ion-conducting network, while Poly(MMA-g-PVC) produces good mechanical strength. Their chemical characters, thermal behavior, morphology, ionic conductivity and interfacial compatibility with lithium metal electrode were characterized by using of infrared spectroscopy (IR), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), optical microscopic images, alternating current impedance (AC impedance) and linear sweep voltammetry (LSV), respectively. The ionic conductivity of DPE increases with the ratio of PMMA/Poly(MMA-g-PVC) (by weight), and the absorbed liquid electrolyte in the polymer blends plays the first important way in this behavior. Room-temperature ionic conductivity of the order of 10−3 S cm−1 has been achieved for DPE, in addition, the DPE also shows good compatibility with Li electrodes and sufficient electrochemical stability for safe operation in Li batteries.  相似文献   

17.
A Li4Ti5O12/carbon nanofibers (LTO/CNFs) composite has been synthesized by solid-state reaction with the in situ growth of CNFs using the chemical vapor deposition method in N2/C2H2. The nanocomposite is characterized by X-ray powder diffraction, field emission scanning electron microscopy, transmission electron microscopy, Raman spectrum, and nitrogen adsorption/desorption isotherms, and is investigated as an anode material for lithium-ion (Li-ion) batteries. The underlying mechanism for the improvement is analyzed by cyclic voltammetry and electrochemical impedance spectroscopy. The in situ synthesized composite shows better electrochemical performance than the bare LTO. The in situ formation of CNFs not only supply an efficient electronic conductive network but also reduce the particle size of LTO and increase in specific surface area, leading to increased electrical conductivity and rapider Li-ion diffusion in electrode/electrolyte interface and bulk electrode.  相似文献   

18.
Li1 − x K x FePO4/C (x = 0, 0.03, 0.05, and 0.07) composites were synthesized at 700 °C in an argon atmosphere by carbon thermal reduction method. Based on X-ray diffraction, scanning electron microscopy, and transmission electron microscopy analysis, the composite was ultrafine sphere-like particles with 100–300 nm size, and the lattice structure of LiFePO4 was not destroyed by K doping, while the lattice volume was enlarged. The electrochemical properties were investigated by four-point probe conductivity measurements, galvanostatic charge and discharge tests, cyclic voltammetry and electrochemical impedance spectroscopy. The results indicated that the capacity performance at high rate and cyclic stability were improved by doping an appropriate amount of K, which might be ascribed to the fact that the doped K ion expands Li ion diffusion pathway. Among the doped materials, the Li0.97K0.03FePO4/C samples exhibited the best electrochemical activity, with the initial discharge capacity of 153.7 mAh g−1 at 0.1 C and the capacity retention rate of about 92% after 50 cycles at above 1 C, 11% higher than undoped sample. Remarkably, it still showed good cycle retention at a high current rate of 10 C.  相似文献   

19.
郑奕  王建明  陈华  邵海波  张鉴清 《电化学》2004,10(3):314-319
采用直接化学合成法制备以钡作添加剂的二次碱性锌电极活性物质,样品的表面形貌及其晶态结构由SEM和XRD表征,并以循环伏安、充放电循环及电化学阻抗谱测定样品的电化学性能.实验表明,锌电极因Ba的添加而生成一种化学式为BaZn(OH)4·xH2O的锌酸钡,改善了电极的电化学性能.此外发现,Zn电极的电化学阻抗谱含有一个对应于电极表面放电产物覆盖率的时间常数.  相似文献   

20.
An electrochemical sensor based on modification of carbon paste electrode by glutathione‐capped copper nanoclusters silica nanoparticles (CuNCs/SiO2NPs) composite for determination of dopamine in the presence of ascorbic acid was presented. Transmission electron microscopy, scanning electron microscopy, energy dispersive X‐Ray analysis, X‐ray photoelectron spectroscopy, Fourier‐transform infrared spectroscopy, X‐ray diffraction and electrochemical impedance spectroscopy were used for characterization of the developed electrode. The electrochemical behavior of dopamine on CuNCs/SiO2NPs/carbon paste electrode was investigated by cyclic voltammetry and differential pulse voltammetry. Dopamine was determined in the range of 10.0 – 900.0 μM, and the limit of detection was obtained as 0.43 μM. The electrochemical behaviors of the coexisting electroactive species, which often cause interference with the determination of dopamine, were investigated. The results show that the developed electrode does not show any interference with respect to coexisting species, even in the presence of ascorbic acid. The developed electrochemical sensor was further employed for the determination of dopamine in human blood plasma, with a good recovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号