首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nanofilm deposits of a porous Sn(IV) oxide are formed by anodic electrodeposition on a polished boron-doped diamond electrode immersed in an aqueous Sn2+ solution. Mechanically and electrochemically stable deposits of 10–15 nm thickness are formed irrespective of the Sn2+ concentration and mass-transport enhancement by power ultrasound. Atomic force microscopy images indicate the presence of a smooth and noncrystalline film, which is stable under ambient conditions. n-type semiconducting characteristics are observed for the aqueous solution redox couples Fe(CN)6 3–/4– and Ru(NH3)6 3+/2+. However, preliminary results from voltammetric experiments indicate that the small and neutral organic molecule N,N,N′,N′-tetramethylphenylenediamine is able to diffuse through the porous film to undergo oxidation directly at the surface of the boron-doped diamond electrode. Electronic Publication  相似文献   

2.
Electrode behavior of homoepitaxial (single-crystal) boron-doped diamond films deposited onto differently orientated faces of dielectric diamond single crystals is studied by the electrochemical impedance and potentiodynamic curve methods. It is shown that the acceptor concentration determined from the slope of Mott–Schottky plots decreases, in the epitaxial films grown under the same conditions, in the series: (111) > (110) > (100). This is explained by different intensity of boron incorporation, from gas phase, into differently orientated faces of the diamond crystals during their growth. The rate of electrode reactions in the Fe(CN)6 3–/4– and Ru(NH3)6 2+/3+ redox systems decreases in the above series, which obeys the earlier found interrelationship between the electrochemical kinetics at diamond electrodes and their doping level.  相似文献   

3.
Sulfonated ormosil hydrogels (~80% water) were prepared using tetramethyl orthosilicate as a silica precursor and 2(4-chlorosulfonylphenyl)ethyltrichlorosilane to provide sulfonate functionality for ion-exchange and ion conductivity. Ruthenium(III) hexamine was used as a redox probe in electrochemical studies performed on porous carbon fibre paper electrodes impregnated with the gel. The gel-modified electrodes extracted Ru(NH3)63+ from solutions in 0.1 M CF3CO2Na(aq) with a partition coefficient of ~36, and with ~100% of the sulfonate sites being accessible for ion exchange. The Ru(NH3)63+/2+ couple exhibited reversible and facile electrochemistry in the gel, with a Ru(NH3)62+ diffusion coefficient of 4.9×10–8 cm2 s–1 determined by chronoamperometry. This is an order of magnitude higher than the mobility of this complex in Nafion. The hydrogel-modified electrodes were stable for days, and could be repeatedly loaded with Ru(NH3)63+.Special Issue to celebrate the 70th birthday of Professor Zbigniew Galus  相似文献   

4.
This paper reports sensitive phenol detection using (i) tyrosinase (Tyr)‐based oxidation of phenol to catechol, combined with (ii) electrochemical‐chemical‐chemical (ECC) redox cycling involving Ru(NH3)63+, catechol, and tris(2‐carboxyethyl)phosphine (TCEP). Phenol is converted into catechol by Tyr in the presence of dissolved O2. Catechol then reacts with Ru(NH3)63+, generating o‐benzoquinone and Ru(NH3)62+. o‐Benzoquinone is reduced back to catechol by TCEP, and Ru(NH3)62+ is accumulated over the course of the incubation. When Ru(NH3)62+ is electrochemically oxidized to Ru(NH3)63+, ECC redox cycling occurs. For simple phenol detection, bare ITO electrodes are used without modifying the electrodes with Tyr. The detection limit for phenol in tap water using Tyr‐based oxidation combined with ECC redox cycling is ca. 10?9 M, while that using only Tyr‐based oxidation is ca. 10?7 M.  相似文献   

5.
Glassy carbon electrodes were modified electrochemically by pretreatment in sulfate, phosphate or carbonate solutions by means of cycling the potential well into the positive limit of the solvent. Electrodes treated in this manner were then used to incorporate and concentrate a variety of redox species that were either cations or aromatic containing compounds, including Ru(bpy)2+3, Ru(NH3)3+6, Cu(NH3)2+4, ferrocene, methylviologen, 1,4-benzoquinone, anthraquinone-2-sulfonate, riboflavin, flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD). Surface-equivalent concentrations ranged from 5 × 10?9 to 1 × 10?7 mol cm?2 for electrodes pretreated for 10 min in sulfuric acid. An E1/2 vs. pH study of 1,4-benzoquinone, riboflavin, FMN and FAD in modified electrodes shows that the pKa values shift toward higher pH (nearly 2 pH units). Results concerning the incorporation of redox compounds detected only by mediation with other electroactive complexes and the study of the modified electrodes in electrocatalysis are also discussed.  相似文献   

6.
《Electroanalysis》2003,15(3):169-174
The properties of a nanodiamond thin film deposit formed on titanium substrates in a microwave‐plasma enhanced CVD process, are investigated for applications in electroanalysis. The nanodiamond deposit consists of intergrown nano‐sized platelets of diamond with a high sp2 carbon content giving it high electrical conductivity and electrochemical reactivity. Nanodiamond thin film electrodes (of approximately 2 μm thickness) are characterized by electron microscopy and electrochemical methods. First, for a reversible one electron redox system, Ru(NH3)63+/2+, nanodiamond is shown to give well‐defined diffusion controlled voltammetric responses. Next, metal deposition processes are shown to proceed on nanodiamond with high reversibility and high efficiency compared to processes reported on boron‐doped diamond. The nucleation of gold is shown to be facile at edge sites, which are abundant on the nanodiamond surface. For the deposition and stripping of both gold and copper, a stripping efficiency (the ratio of electro‐dissolution charge to electro‐deposition charge) of close to unity is detected even at low concentrations of analyte. The effect of thermal annealing in air is shown to drastically modify the electrode characteristics probably due to interfacial oxidation, loss of active sp2 sites, and loss of conductivity.  相似文献   

7.
《Electroanalysis》2003,15(22):1756-1761
Mercaptoundecanoic acid (MUA) and glutathione (GSH) self‐assembled monolayers were prepared on gold‐ wire microelectrode. Cyclic voltammetry was used to investigate the influence of temperature on electrochemical behaviors of Fe(CN)63?/4? and Ru(NH3)63+/2+ at these SAMs modified electrodes in aqueous solution. It is found that temperature shows great influence on electron transfer (ET) and mass transport (MT) for the two SAMs modified electrodes and the influence of temperature depends on the charge properties of the redox couples and terminal groups of SAMs and the structure of the monolayer on gold surface. The temperature can greatly increase MT rate of Fe(CN)63?/4? at both MUA and GSH modified electrodes. However, the increased MT rate doesn't have any effect on the CV's for Fe(CN)63?/4? /MUA system. For Ru(NH3)63+/2+ , temperature can greatly improve the electrochemical reaction in both MUA and GSH modified electrodes, which is ascribed to temperature‐induced diffusion and convection and the electrostatic interaction between Ru(NH3)63+/2+ and negatively charged carboxyl groups on the electrode surface.  相似文献   

8.
Self-assembled monolayers (SAMs) of thiols with carboxylic acid terminal groups were formed on gold substrates. The electron transfer characteristics of redox species on the above SAM-modified electrodes were studied in acid and neutral media with the help of voltammetry under two different conditions: (1) solution phase electron transfer and (2) bridge mediated electron transfer. Two redox systems, viz., [Fe(CN)6]4-/3− and Ru[(NH3)6]2+/3+ were chosen for the solution phase study. Investigations of bridge mediated electron transfer were carried out by functionalising the SAM with redox moieties and then studying their redox behaviour. For this study, ferrocene carboxylic acid and 1,4-diamino anthraquinone were used and they were linked to carboxylic acid terminated thiols by covalent linkage. The voltammetric results with mercaptoundecanoic acid SAM demonstrate the difference in behaviour between solution phase and bridge mediated electron transfer processes.  相似文献   

9.
The concept of non-diamond sp2 impurity states as charge transfer mediators on boron-doped diamond (BDD) surface was suggested as an explanation for the electrochemical behavior of synthetic diamond based electrodes. In order to verify this concept, graphite particles (sp2) were deposited on diamond electrodes (sp3) by mechanical abrasion. The behavior of the so prepared diamond–graphite composite electrodes were compared with those of as-grown (BDDag) and those after mild anodic polarization (BDDmild).Outer-sphere electron transfer processes such as ferri/ferrocyanide (Fe(CN)6III/II) and inner-sphere charge transfer reactions such as 1,4-benzoquinone/hydroquinone (Q/H2Q) were chosen in order to investigate the electrochemical properties of these composite electrodes. Both redox systems became more reversible as the graphite (sp2) loading increased. A strong analogy existed between as-grown diamond electrodes and diamond–graphite composite electrodes.Finally a model is proposed which describes the BDD electrode surface as a diamond matrix in which non-diamond (sp2) impurity states are dispersed. These non-diamond sp2 states on BDD surface acts as charge mediators for both inner-sphere and outer-sphere reactions.  相似文献   

10.
The electrochemical behaviour of carbon paste electrodes prepared using nanocarbon and mineral oil was investigated and the results contrasted with different carbon and carbon pastes electrodes. The composition of carbon paste was studied by performing cyclic voltammetry performed in 0.1 M KCl solution in the presence of 4.0 mM Ru(NH3)6Cl3, a well‐characterized redox system commonly used to test the electrode behaviour. After optimisation of the paste composition, the sensors chosen were tested for the analysis and characterization of three different systems: Ru(NH3)63+/2+, FcCH2OH/FcCH2OH+ and acetaminophen. The ability to obtain high quality voltammetry from the nanocarbon electrode was demonstrated and simulation of the voltammetry allowed the extraction of electrode kinetic parameters with high precision.  相似文献   

11.
The electrochemical behavior of different redox systems and detection of catechol were performed on the as‐grown boron‐doped diamond (BDD) electrodes and the nanograss array BDD. Compared with as‐grown BDD, the electron transfer on the nanograss array BDD surface became slower toward the negatively charged Fe(CN)63?, whereas changed little toward the positively charged Ru(NH3)63+. The nanograss array BDD showed higher electrocatalytic activity toward the catechol detection than did the as‐grown BDD. Good linearity was observed for a concentration range from 5 to 100 μM with a sensitivity of 719.71 mA M?1 cm?2 and a detection limit of 1.3 μM on the nanograss array BDD.  相似文献   

12.
《Electroanalysis》2004,16(20):1704-1710
Titanium carbide (TiC) polycrystalline thin films, obtained by a hybrid chemical vapor deposition/powder flowing technique, were characterized and used to assemble working electrodes. The potential window and the electrochemistry of standard redox couples ([Ru(NH3)6]3+, [Fe(CN)6]3?) have been investigated in cyclic voltammetry, demonstrating a behavior similar to glassy carbon electrodes. The quinone (Q)/hydroquinone(H2Q) redox couple presented an interesting quasireversible behavior(Ep=0.07 mV) , confirmed also for other quinones.  相似文献   

13.
Microwave activation of electrochemical processes has recently been introduced as a new technique for the enhancement and control of processes at electrode|solution (electrolyte) interfaces. This methodology is extended to processes at glassy carbon and boron-doped diamond electrodes. Deposition of both Pb metal and PbO2 from an aqueous solution of Pb2+ (0.1 M HNO3) are affected by microwave radiation. The formation of PbO2 on anodically pre-treated boron-doped diamond is demonstrated to change from kinetically sluggish and poorly defined at room temperature to nearly diffusion controlled and well defined in the presence of microwave activation. Calibration of the temperature at the electrode|solution (electrolyte) interface with the Fe3+/2+ (0.1 M HNO3) redox system allows the experimentally observed effects to be identified as predominantly thermal in nature and therefore consistent with a localized heating effect at the electrode|solution interface. The microwave-activated deposition of PbO2 on boron-doped diamond remains facile in the presence of excess oxidizable organic compounds such as ethylene glycol. An increase of the current for the electrocatalytic oxidation of ethylene glycol at PbO2/boron-doped diamond electrodes in the presence of microwave radiation is observed. Preliminary results suggest that the electrodissolution of solid microparticles of PbO2 abrasively attached to the surface of a glassy carbon electrode is also enhanced in the presence of microwave radiation. Electronic Publication  相似文献   

14.
《Electroanalysis》2017,29(2):339-344
In the electrochemical detection method for pesticides that measures their inhibitory effects on acetylcholinesterases (AChEs), the direct electrooxidation of the enzyme product (thiocholine, SCh) is slow at conventional electrodes. To overcome this limitation, an electron mediator is required to lower the applied potential and facilitate the transfer of electrons between the enzyme product and electrode. In this study, [Ru(NH3)5py]3+ is introduced as an electron mediator in inhibition‐based pesticide detection. To obtain a better signal‐to‐background ratio, [Ru(NH3)5py]3+, which undergoes a fast outer‐sphere reaction, is combined with low‐electrocatalytic indium‐tin‐oxide (ITO) electrodes at which many interfering species undergo slow redox reactions. AChE is immobilized onto an avidin‐modified ITO electrode via the direct adsorption of avidin onto ITO followed by the biospecific binding of biotinylated AChE to the avidin. SCh is generated from acetylthiocholine by AChE. Subsequently, SCh converts [Ru(NH3)5py]3+ to [Ru(NH3)5py]2+, which is then oxidized at the ITO electrode. This procedure allows the sensitive detection of carbaryl at a low applied potential of 0.15 V vs Ag/AgCl. The calculated detection limit for carbaryl is approximately 0.3 pM. This simple and sensitive pesticide sensor is thus very promising and should be extendable to the onsite environmental monitoring of other pesticides.  相似文献   

15.
Metal (Ru, Os, Fe) bipyridyl complexes and Ru(NH3)3+6 were incorporated into several montmorillonite clays and their aluminum and silicon-pillared analogues. Film concentrations and apparent diffusion coefficients were measured and compared by using spectrophotometry, cyclic voltammetry and chronocoulometry. The catalytic role of isomorphously substituted iron was evaluated and implicated by its effects on Ru(bpy)3+3 voltammetric behavior. A model is proposed for charge transport within the novel silicon-pillared clay.  相似文献   

16.
The redox properties of a series of [Ru(phen)2(py)X]n+ cations (X = pyridine, NH3, Cl, Br, I, CN, SCN, N3 and NO2) have been investigated in acctonitrile. Two reversible reduction steps are seen at ? 1.35 and ? 1.6 V vs Ag/AgCl; the invariance of these processes with X-group is indicative of electron addition to molecular orbitals mainly of phenanthroline ligand π* origin. Irreversible multi-electron reductions follow below ? 2.20 V. The Ru(II)/Ru(III) couple is seen as a reversible wave near + 0.8 V vs the normal hydrogen electrode, from calibration with ferrocene, except in the cases of the NO2 and SCN complexes, where rapid reactions involving these ligands occur.  相似文献   

17.
An extensive investigation of the direct (unmediated) electrochemical activity of various redox proteins at pyrolytic graphite electrodes has been undertaken. With the exception of the “blue” copper protein azurin, a profound preference for the hydrophilic “edge” over the hydrophobic “basal” plane orientation of the graphite surface is observed. This may be identified with the presence of various oxidised (CO) functionalities at the polished “edge” surface which, most probably in a random manner, constitute reversible and productive binding domains for the proteins. Conditions under which the rates and reversibility of heterogenous electron transport may be optimised depend upon the protein under examination. Well-behaved electrochemistry, indicate of diffusion-dominated heterogeneous electron transport, is modulated by electrode surface protonation (pK = 5.6) and levels of redox-inert multivalent cations, including Mg2+ and Cr(NH3)3+6. The electrochemistry of several proteins which have negatively charged interaction domains, including plastocyanin, and chloroplast and bacterial ferrodoxins, is promoted and stabilised by electrode surface protonation, and interfacial binding of multivalent cations which is attenuated at high ionic strength. Coversely, the electrochemistry of horse-heart cytochrome c, for which the region around the exposed heme edge carries a net positive charge, is inhibited by electrode surface protonation and destablished by the presence of multivalent cations. These patterns of behaviour may be rationalised in terms of a heterogeneous electrode surface which comprises regions of hydrophilic polar groups at which proteins may associate reversibly if resultant coulombic interactions are favourable, and regions of extensive hydrophobicity at which less reversible and (probably) degradative adsorption occurs. Within this basic model, there is considerable scope for domain selectivity which may arise from variations in medium and short range order and distribution of CO functionalities. Implications for the control of in vivo electron-transport processes are discussed.  相似文献   

18.
Electrochemically active hybrid coatings based on cationic films, didodecyldimethylammonium bromide (DDAB), and poly(diallyldimethylammonium chloride) (PDDAC) are prepared on electrode surface by cycling the film-covered electrode repetitively in a pH 6.5 solution containing Fe(CN)6 3− and Ru(CN)6 4− anions. Modified electrodes exhibited stable and reversible voltammetric responses corresponding to characteristics of Fe(CN)6 3−/4− and Ru(CN)6 4−/3− redox couples. The cyclic voltammetric features of hybrid coatings resemble that of electron transfer process of surface-confined redox couple. Electrochemical quartz crystal microbalance results show that more amounts of electroactive anionic complexes partitioned into DDAB coating than those doped into PDDAC coating from the same doping solution. Peak potentials of hybrid film-bound redox couples showed a negative shift compared to those at bare electrode and this shift was more pronounced in the case of DDAB. Finally, the advantages of hybrid coatings in electrocatalysis are demonstrated with sulfur oxoanions.  相似文献   

19.
20.
The kinetics of Ru[(NH3)6]3+ reduction in 1 M NaNO3 solution at Ag(210) and Ag(111) singlecrystal electrodes modified by n-decanthiol monolayer is studied by electrochemical impedance spectroscopy and cyclic voltammetry. By using these two methods, standard rate constants of the redox reaction involving Ru[(NH3)6]3+/2+ redox couple in the absence and in the presence of the n-decanthiol film were estimated. The equivalent circuit describing the experimental data in the presence of the self-assembled organic monolayer and in the absence of redox reaction is an electrical circuit comprising a large resistance (∼106 Ω) connected in parallel with a capacitance (∼10−8 F). Analysis of kinetic data and extrapolation of Tafel lines resulted in the determination of the rate constant at unmodified Ag-electrode, which is characteristic of very fast heterogeneous electron transfer. The calculated rate constants for n-decanthiol-modified silver singlecrystal faces (210) and (111) in 1 M NaNO3 solution (pH 6.3) equal 4.63 × 10−5 and 3.05 × 10−5 cm/s, respectively. The results are compared with the data at hand reported by different authors for gold electrodes in indifferent electrolyte solution in the absence and in the presence of self-assembled monolayer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号