首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chirped-probe-pulse (CPP) femtosecond (fs) coherent anti-Stokes Raman scattering (CARS) spectroscopy for single-laser-shot temperature measurements in flames is discussed. In CPP fs CARS, a giant Raman coherence is created in the medium by impulsive pump-Stokes excitation, and the temperature-dependent temporal decay of this initial coherence is mapped into the frequency of the CARS signal using a CPP. The theory of the CPP fs CARS technique is presented. A computer code has been developed to calculate theoretical CPP fs CARS spectra. The input parameters for the calculation of the theoretical spectra include the temperature, probe time delay, ratio of the resonant and nonresonant susceptibilities, and parameters for characterizing the pump, Stokes and probe pulses. The parameters for characterizing the pump, Stokes and probe pulses are determined from the best fit of theoretical spectra to experimental spectra acquired from calibration flames at a known temperature. For spectra acquired in subsequent measurements, these laser parameters are fixed and temperature is determined as one of the fit parameters from the best fit of theoretical spectra to experimental spectra. For single-laser-shot CPP fs CARS temperature measurements performed in steady, near-adiabatic flames, the best-fit temperature distribution width is typically less than 1.5% of the mean temperature. The mean temperature is accurate to within approximately 3% with respect to the adiabatic flame temperature. The most significant limitation on temperature measurement accuracy is associated with the evaluation of the theoretical laser parameters. Significant improvements in the temperature measurement accuracy are expected once monitoring equipment capable of characterizing the spectrum and phase of each laser pulse is incorporated in the experiments.  相似文献   

2.
Characteristics and structure of inverse flames of natural gas   总被引:2,自引:0,他引:2  
Characteristics and structure of nominally non-premixed flames of natural gas are investigated using a burner that employs simultaneously two distinct features: fuel and oxidiser direct injection, and inverse fuel and oxidiser delivery. At low exit velocities, the result is an inverse diffusion flame that has been noted in the past for its low NOx emissions, soot luminosity, and narrow stability limits. The present study aimed at extending the burner operating range, and it demonstrated that the inverse flame exhibits a varying degree of partial premixing dependent on the discharge nozzle conditions and the ratio of inner air jet and outer fuel jet velocities. These two variables affect the flame length, temperature distributions, and stability limits. Temperature measurements and Schlieren visualisation show areas of enhanced turbulent mixing in the shear region and the presence of a well-mixed reaction zone on the flame centreline. This reaction zone is enveloped by an outer diffusion flame, yielding a unique double-flame structure. As the fuel–air equivalence ratio is decreasing with an increase in the inner jet velocity, the well-mixed reaction zone extends considerably. These findings suggest a method for establishing a flame of uniform high temperature by optimising the coaxial nozzle geometry and flow conditions. The normalised flame length is decreasing exponentially with the air/fuel velocity ratio. Measurements demonstrate that the inverse flame stability limits change qualitatively with varying degree of partial premixing. At the low premixing level, the flame blow-out is a function of the inner and outer jet velocities and the nozzle conditions. The flame blow-out at high degree of partial premixing occurs abruptly at a single value of the inner air jet velocity, regardless of the fuel jet velocity and almost independent of the discharge nozzle conditions.  相似文献   

3.
本文对浮力作用下的矩形射流扩散燃烧过程进行了三维大涡模拟。数值模拟结果展示了浮力作用下矩形射流扩散火焰的动态弯曲过程,比较分析了射流速度对火焰刚性的影响,发现射流速度越高火焰弯曲程度越小、燃料喷射距离越远。对浮力作用下的水平射流横截面流动分析结果表明,由于流向涡的卷吸作用在局部区域存在逆着浮力方向的流动。  相似文献   

4.
TheQ-branch spectra of molecular hydrogen have been used to determine rotational temperatures bycoherentanti-StokesRamanscattering (CARS). A supersonic jet expansion through a constant flow nozzle of adjustable temperature served as hydrogen source in the temperature range 300 to 2500 K. The analysis of the high-temperature data reveals details of the internal energy transfer in jet expansion.  相似文献   

5.
A high‐resolution (∼0.1 cm−1) spectroscopic method based on the application of a Fabry–Pérot interferometer to the spectral analysis of the coherent anti‐Stokes Raman scattering (CARS) signal from an individual Raman transition was used to obtain single‐shot spectra of hydrogen Q‐branch transitions directly in the flame of a pulsed, high‐pressure H2/O2 combustion chamber. Simultaneously with the Fabry–Pérot pattern, a broadband CARS spectrum of the complete H2Q ‐branch structure was recorded in order to measure the temperature of the probe volume. During every cycle of the combustion chamber, a pressure pulse together with single‐shot CARS spectra, providing information on individual line shapes and medium temperature, was recorded. On the basis of the experimental data, the temperature dependences of lineshift coefficients for several Q‐branch lines of hydrogen molecules under collisions with water molecules were determined in the temperature range 2100 < T < 3500 K, and an empirical ‘fitting law’ for H2 H2O lineshift coefficients is proposed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Simultaneously calibrated, non-linear two-line atomic fluorescence (SC-nTLAF) thermometry for application in turbulent sooting flames has been developed to increase the precision of single-shot, planar measurements of gas temperature. The technique has been demonstrated in both steady and turbulent sooting flames, showing good agreements with previous optical measurements. The SC-nTLAF involves imaging simultaneously laser-induced fluorescence (LIF) of atomic indium in both the target flame and a non-sooting calibration flame for which the temperature distribution is known. The LIF intensities from the reference flame enable correction for fluctuations, not only in the laser power, but also in the laser mode. The resulting precision was found to be ±67 K and ±75 K (based on one standard deviation) in the rich and oxidizing regions of a steady sooting flame for which the measured temperature was 1610 K and 1854 K, respectively, with a spatial resolution of 550 × 550 µm2. This corresponds to a relative precision of ∼ 4.1%. The resulting precision in the single-shot temperature images for a well-characterized, lifted ethylene jet diffusion flame (fuel jet Reynolds number = 10,000) compares favorably with previously reported data obtained with shifted-vibrational coherent anti-Stokes Raman spectroscopy (CARS), together with increased spatial resolution. The planar imaging also provides more details of the temperature distribution, particularly in the flame brush region, which offers potential for measurement of more parameters, such as gradients and spatial corrections. The new calibration method has also achieved a significant time-saving in both data collection and processing, which is an estimated total of ∼ 60%–70% compared with conventional nTLAF.  相似文献   

7.
Rotational coherent anti-Stokes Raman spectroscopy (CARS) has over the years demonstrated its strong potential to measure temperature and relative concentrations of major species in combustion. A recent work is the development and experimental validation of a CO2 model for thermometry, in addition to our previous rotational CARS models for other molecules. In the present work, additional calibration measurements for relative CO2/N2 concentrations have been made in the temperature range 294-1246 K in standardized CO2/N2 mixtures. Following these calibration measurements, rotational CARS measurements were performed in a laminar CO/air diffusion flame stabilized on a Wolfhard-Parker burner. High-quality spectra were recorded from the fuel-rich region to the surrounding hot air in a lateral cross section of the flame. The spectra were evaluated to obtain simultaneous profiles of temperature and concentrations of all major species; N2, O2, CO, and CO2. The potential for rotational CARS as a multi-species detection technique is discussed in relation to corresponding strategies for vibrational CARS.  相似文献   

8.
Simultaneous high-resolution Rayleigh scattering imaging and planar laser-induced fluorescence (PLIF) of OH are combined to measure the dissipative scales associated with thermal mixing and the structure and scales of extinguished regions of the reaction zone. Measurements are performed throughout the near field (x/d = 5, 10, 15, 20) of two turbulent, non-premixed methane/hydrogen/nitrogen jet flames with Re = 15,200 and 22,800 (flames DLR-A and DLR-B of the TNF workshop). Locally extinguished regions are identified by discontinuities in the OH layers, and the extinction hole sizes are measured. For each flame, the probability density function of the hole sizes is very similar throughout the entire near field, with the most likely hole size being 1.9 mm in DLR-A and 1.1 mm in DLR-B. Extinction events are equally probable at all measurement locations in DLR-A. In the DLR-B flame, there is a progression from frequent extinction close to the nozzle to more continuous reaction zones further downstream. The approximate instantaneous location of the stoichiometric contour is determined using the OH-PLIF images, enabling statistical analysis of dissipative scales conditioned on rich and lean conditions. The widths of the thin, elongated structures that dominate the thermal dissipation field are measured. Statistics of this microscale are qualitatively similar in both flames, with the higher Reynolds number producing smaller scales throughout the flow field. For dissipation layers in rich regions, the layer widths increase significantly with increasing temperature, while on the lean side the layer widths decrease with increasing temperature.  相似文献   

9.
The technique of femtosecond time‐resolved coherent anti‐Stokes scattering (fs‐CARS) is used to investigate the strongly perturbed ν1 ro‐vibrational Raman band of formaldehyde (H2CO). The time‐dependent signal is simulated using a ‘Watson‐’Hamiltonian in A‐type reduction and Raman theory for asymmetric rotors. The results are compared with the experimental data. The fs‐CARS method measures the evolution of the polarization in a molecular ensemble via superposition of many states and is sensitive to spectral irregularities or line shifts of the involved transitions. ‘Coriolis’ interactions play a major role in the analysis of the ν1 band of formaldehyde. We successfully simulate the fs‐CARS transient signal from the ν1 band of formaldehyde including a model for multiple ‘Coriolis’ interactions, without the necessity of describing the complete interaction between all the vibrational levels. ‘Coriolis’ coupling coefficients and energy shifts are derived from the experiment by a least‐square fit. The results are discussed and compared to literature values. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
Flame stabilisation in (highly) preheated mixture is common in several industrial applications. When the reactants are injected separately in the device (usually at high-speed), the flame is lifted so that the fuel and oxidant first mix to give an ignitable mixture. If the temperature of the mixture is adequate, it auto-ignites stabilizing the flame. Here we focus on an academic lifted jet flame and Large Eddy Simulation (LES) is used to capture the flame and auto-ignition dynamics. Comparisons with experimental data show that LES simulates accurately high OH fluctuation levels at the stabilisation location. The vortex dynamics linked to these fluctuations is analyzed and it is found that small scale coherent structures play a vital role in the auto-ignition process. These structures are axial vorticity tubes (braids) and are located relatively far (in the radial direction) from the shear-layer. As a consequence, the lift-off height varies dramatically in time leading to OH fluctuations of the order of the mean OH concentration. This scenario is monitored in the compositional space highlighting the simultaneous evolution of OH, HO 2 and temperature. Further, different strategies for open-loop control of the flame lift-off height are tested. In order to anchor the flame at different positions downstream of the nozzle, the vortex dynamics in the shear-layer was modified. Promoting successively vortex ring and braids, the auto-ignition region was moved significantly. In particular, modified nozzle geometries impacted the formation of braids and ensured a good premixing very close to the nozzle. As a consequence, it was possible to reduce significantly the lift-off height and stabilise the flame few diameters downstream of the nozzle.  相似文献   

11.
The paper presents Large Eddy Simulations (LESs) for the Sydney ethanol piloted turbulent dilute spray flames ETF2, ETF6, and ETF7. The Flamelet Generated Manifold (FGM) approach is employed to predict mixing and burning of the evaporating fuel droplets. A methodology to match the experimental inflow spray profiles is presented. The spray statistical time-averaged results show reasonable agreement with mean and RMS data. The Particle Size Distribution (PSD) shows a good match downstream of the nozzle exit and up to x/D = 10. At x/D = 20 and 30 the PSD is under-predicted for droplets with mean diameter D10 > 20μm and over-predicted for the smaller size droplets. The simulations reasonably predict the reported mean flame structure and length. The effect of increasing the carrier velocity (ETF2–ETF7) or decreasing the liquid fuel injection mass flow rate (ETF2–ETF6) is found to result in a leaner, shorter flame and stronger spray–flow interactions. Higher tendency to local extinction is observed for ETF7 which is closer to blow-off compared to ETF2 and has higher scalar dissipation rates, higher range of Stokes number, and faster droplet response. The possible sources of LES-FGM deviations from the measurements are discussed and highlighted. In particular, the spray time-averaged statistical error contribution is quantified and the impact of the inflow uncertainty is studied. Sensitivity analysis to the pre-vaporized nozzle fuel mass fraction show that such small inflow perturbations (by ±?2% for the ETF2 flame) have a strong impact on the flame structure, and the droplets’ dynamics. Conditional scatter plots show that the flame exhibits wide range of mixing conditions and bimodal mixing lines particularly at upstream locations (x/D?相似文献   

12.
A systematic study of the influence of the collisional narrowing and the cross coherence effect on the temperature analysis of N2-Q branch-CARS spectra at atmospheric pressure is presented. A comparison of calculated spectra over a temperature range 300–2000 K reveals that the standard theory neglecting these effects leads to temperature errors of +1.7% under flame conditions, when the nonresonant background is suppressed. This result is supported by the analysis of experimental CARS temperature measurements on a standard laminar diffusion flame. Furthermore, the temperature misreadings originating from erroneous slit function parameters and laser linewidth were investigated.  相似文献   

13.
An anomalous lineshape of stimulated Raman spectra obtained from the region very close to the nozzle of supersonic pulsed expansions of nitrogen is presented. High‐resolution Raman spectra of the Q branch of the fundamental vibration mode of N2 have been recorded from two different nitrogen expansions at T0 = 295 K and P0 = 1.5–3.5 bar, the lasers crossing the jet axis in the range z/D = 0.25–1.25, where D is the effective nozzle diameter. The combination of Doppler shifts and strong gradients of density and temperature in the near‐nozzle region yield an inhomogeneous broadening and a double peak structure of the recorded Raman line profiles. The comparison of the experimental results with the simulation of the Raman spectrum from this region provides valuable information about the near‐nozzle flow field. The lineshape described here is different from another reported previously in the literature, which is based on a depletion of the density of free molecules on the axis due to condensation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
Coherent anti‐Stokes Raman scattering (CARS) spectroscopy of gas‐phase CO2 is demonstrated using a single femtosecond (fs) laser beam. A shaped ultrashort laser pulse with a transform‐limited temporal width of ∼7 fs and spectral bandwidth of ∼225 nm (∼3500 cm−1) is employed for simultaneous excitation of the CO2 Fermi dyads at ∼1285 and ∼1388 cm−1. CARS signal intensities for the two Raman transitions and their ratio as a function of pressure are presented. The signal‐to‐noise ratio of the single beam–generated CO2 CARS signal is sufficient to perform concentration measurements at a rate of 1 kHz. The implications of these experiments for measuring CO2 concentrations and rapid pressure fluctuations in hypersonic and detonation‐based chemically reacting flows are also discussed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
High-repetition rate laser Rayleigh scattering is used to study the temperature fluctuations, power spectra, gradients, and thermal dissipation rate characteristics of a non-premixed turbulent jet flame at a Reynolds number of 15,200. The radial temperature gradient is measured by a two-point technique, whereas the axial gradient is measured from the temperature time-series combined with Taylor’s hypothesis. The temperature power spectra along the jet centerline exhibit only a small inertial subrange, probably because of the low local Reynolds number (Reδ ≈ 2000), although a larger inertial subrange is present in the spectra at off-centerline locations. Scaling the frequency by the estimated Batchelor frequency improves the collapse of the dissipation region of the spectra, but this collapse is not as good as is obtained in non-reacting jets. Probability density functions of the thermal dissipation are shown to deviate from lognormal in the low-dissipation portion of the distribution when only one component of the gradient is used. In contrast, nearly log-normal distributions are obtained along the centerline when both axial and radial components are included, even for locations where the axial gradient is not resolved. The thermal dissipation PDFs measured off the centerline deviate from log-normal owing to large-scale intermittency. At one-half the visible flame length, the radial profile of the mean thermal dissipation exhibits a peak off the centerline, whereas farther downstream the peak dissipation occurs on the centerline. The mean thermal dissipation on centerline is observed to increase linearly with downstream distance, reach a peak at the location of maximum mean centerline temperature, and then decrease for farther downstream locations. Many of these observed trends are not consistent with equivalent non-reacting turbulent jet measurements, and thus indicate the importance of understanding how heat release modifies the turbulence structure of jet flames.  相似文献   

16.
The application of polarization‐sensitive (PS) coherent anti‐Stokes Raman scattering (CARS) spectroscopy for the investigation of highly luminescent free‐base porphyrins under Qx band resonance is discussed. For coproporphyrin I tetramethyl ester (CP‐I‐TME), PS CARS spectra involving resonances with the electronic Qx absorption band as well as polarized spontaneous Raman spectra involving B band resonance are presented. A quantitative evaluation of the CP‐I‐TME spectra is performed and the results are compared to our previously presented data on free‐base octaethylporphine (OEP) and mesoporphyrin IX dimethyl ester (MP‐IX‐DME), which were obtained under identical excitation conditions. This comprehensive analysis reveals several spectral differences that can be attributed to the different β–substitution pattern of the porphyrin macrocycle. Additionally, the strong resonance enhancement of totally symmetric modes under Qx band excitation is identified as a common property for OEP, CP‐I‐TME, and MP‐IX‐DME; this enhancement selectivity distinguishes the investigated substances from what is generally observed for metallo porphyrins. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
We combine theoretical and experimental methods to study the processes induced by fast laser heating of metal foils. These processes reveal themselves through motion of frontal (irradiated) and rear‐side foil boundaries. The irradiated targets are 0.3‐2 micron thick aluminum foils deposited on much thicker (150 microns) glass plate. The instant boundary positions is measured by pump‐probe technique having ∼40‐150 fs time and ∼1 nm spatial resolutions. Ultrashort laser pulse transforms a frontal surface layer with thickness dT into two‐temperature (TeTi) warm dense matter state. Its quantitative characteristics including its thickness are defined by poorly known coefficients of electron‐ion energy exchange α and electron heat conductivity κ. Fast laser heating rises pressure in the dT‐layer and therefore produce acoustic waves. Propagation and reflection from the frontal and rear boundaries of these waves causes the displacement Δx (t) of boundary positions. Pressure wave profiles, and hence functions Δx (t), depend on thickness dT. This is why the experimental detection of Δx (t) opens a way to accurate evaluation of the coefficients α and κ (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
We experimentally study lean premixed combustion stabilized behind a backward-facing step. For a propane–air mixture, the lean blowout limit is associated with strong pressure fluctuation arising simultaneously with strong flame–vortex interactions, which have been shown to constitute the mechanism of heat release dynamics in this flow. A high-speed air jet, issuing from a small slot and injected perpendicular to the main flow near the step, is used to disrupt this mechanism. For momentum ratio of jet to main flow below unity, the jet dilutes the mixture, further destabilizing the flame or leading to complete blowout. Above unity, the flame becomes more stable, and the pressure oscillations are suppressed. Flow visualization and OH*/CH* chemiluminescence measurements show that a strong jet produces a more compact flame that is less driven by the wake vortex, anchored closer to the step, and deflected upwards away from the lower wall of the channel. This renders the flame less vulnerable to heat loss and strong strains, which improves its stability and extends the flammability limit. Adding hydrogen to the main fuel improves the flame stability over the entire range of the air jet mass flow, with better results for momentum ratio larger than 1; H2 pulls the flame further upstream, away from the shear zone and the unsteady vortex. NOx emission benefits from the air jet, while, with H2 addition, NOx concentration is higher in the products as the overall burning temperature rises. However, hydrogen addition enables extending the flammability limit further by increasing air supply in the primary stream, hence achieving lower NOx. The study suggests a simpler, almost passive, multi-objective combustion control technique and indicates that hydrogen addition can be a successful in situ approach for NOx reduction.  相似文献   

19.
Composite ZnO/SiO2 nanoparticles were made by flame spray pyrolysis (FSP). Characteristics of the product powder and its crystallization behavior on post‐calcination were evaluated. Polyhedral aggregates of nano‐sized primary particles consisting of ZnO nano‐crystals 1–3 nm in size and amorphous SiO2 were obtained by FSP. A short residence time in the flame can result in the co‐existence of the ZnO and SiO2 clusters without substitution or reaction hindering each other's grain growth. There was almost no change in the XRD pattern by calcination at 600 °C for 2 h, suggesting a high thermal stability of the ZnO nano‐crystals in the composite particles. A pure α‐willemite phase was obtained at 900 °C. At this calcination temperature, dC and dBET of the powder were 63 and 44 nm, respectively. The nano‐composite structure of the FSP‐made particles can suppress crystalline growth of ZnO during calcination to maintain a high reactivity of ZnO with SiO2, obtaining pure α‐willemite with high specific surface area at low calcination temperatures.  相似文献   

20.
High‐quality Inx Al1–xN (0.71 ≤ xIn ≤ 1.00) nanocolumns (NCs) have been grown on Si(111) substrates by rf‐plasma‐assisted molecular‐beam epitaxy (rf‐MBE). Low‐temperature photoluminescence (LT‐PL) spectra of various In‐rich InAlN NCs were measured at 4 K and single peak PL emissions were observed in the wavelength region from 0.89 µm to 1.79 µm. Temperature‐dependent PL spectra of In0.92Al0.08N NCs were studied and the so‐called “S‐shape” (decrease–increase–decrease) PL peak energy shift was observed with increasing temperature. This shift indicates the carrier localization induced by the In segregation effect and is different from the anomalous blue shift frequently observed in InN films and nanowires with high residual carrier concentra‐ tions. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号