首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present paper, the effects of nitridation on the quality of GaN epitaxial films grown on Si(1 1 1) substrates by metal–organic chemical vapor phase deposition (MOCVD) are discussed. A series of GaN layers were grown on Si(1 1 1) under various conditions and characterized by Nomarski microscopy (NM), atomic force microscopy (AFM), high resolution X-ray diffraction (HRXRD), and room temperature (RT) photoluminescence (PL) measurements. Firstly, we optimized LT-AlN/HT-AlN/Si(1 1 1) templates and graded AlGaN intermediate layers thicknesses. In order to prevent stress relaxation, step-graded AlGaN layers were introduced along with a crack-free GaN layer of thickness exceeding 2.2 μm. Secondly, the effect of in situ substrate nitridation and the insertion of an SixNy intermediate layer on the GaN crystalline quality was investigated. Our measurements show that the nitridation position greatly influences the surface morphology and PL and XRD spectra of GaN grown atop the SixNy layer. The X-ray diffraction and PL measurements results confirmed that the single-crystalline wurtzite GaN was successfully grown in samples A (without SixNy layer) and B (with SixNy layer on Si(1 1 1)). The resulting GaN film surfaces were flat, mirror-like, and crack-free. The full-width-at-half maximum (FWHM) of the X-ray rocking curve for (0 0 0 2) diffraction from the GaN epilayer of the sample B in ω-scan was 492 arcsec. The PL spectrum at room temperature showed that the GaN epilayer had a light emission at a wavelength of 365 nm with a FWHM of 6.6 nm (33.2 meV). In sample B, the insertion of a SixNy intermediate layer significantly improved the optical and structural properties. In sample C (with SixNy layer on Al0.11Ga0.89N interlayer). The in situ depositing of the, however, we did not obtain any improvements in the optical or structural properties.  相似文献   

2.
The characteristics of SWIR (1.6–3 μm) 320 × 256 and 1024 × 1024 focal plane arrays (FPA’s) based on n-type In-doped HgCdTe heteroepitaxial layers are reported. The HgCdTe layers were grown by molecular beam epitaxy on silicon substrates with ZnTe and CdTe buffer layers. pn junctions were formed by arsenic ion implantation into HgCdTe film. Reverse current in the temperature range from 210 to 330 K was found to be limited by the diffusion mechanism. At the same time in the temperature range from 140 to 210 K the reverse current was dominated by the thermal generation of charge carriers through deep traps located in the middle of the band gap. At 170 K NETD was less than 40 mK.  相似文献   

3.
In this article the performance of photodiodes made from epitaxially grown layers of p-InSb on n-type InSb substrates is reported. The effect of increasing Cd atomic weight percent on p-type carrier concentration and mobility at 77 K is also discussed. In our epitaxial growth method, a ramp cooling technique was used. Finally by improving growth parameters such as growth temperature, prior cleaning of B face (Sb) n-InSb substrates and cooling rate, adequate epitaxial layers of p-InSb on n-InSb <1 1 1> and consequently highly sensitive photodiodes have been obtained.A high detectivity photodiodes fabricated for p-InSb on n-InSb substrate by liquid phase epitaxy (LPE) was measured using optoelectronic tests and the detectivity of the diodes was compared with n-InSb on p-InSb. Several other tests such as Hall effect, thickness measurements, IV and X-ray diffraction (XRD) were also performed and morphology images will be presented in this paper.  相似文献   

4.
The polycrystalline CdZnTe:Cl thick films which have high resistivity about 5 × 109 Ω cm are grown by thermal evaporation method. The leakage currents of as-deposited CdZnTe layers are still too high to operate as medical applications. The blocking layer of Schottky type was formed on the stoichiometric surface of polycrystalline CdZnTe layers to suppress the leakage current of polycrystalline CdZnTe X-ray detectors. The polycrystalline CdZnTe Schottky barrier diodes with indium contact exhibit the low leakage current (14 nA/cm2) at 40 V due to its high barrier height (ϕb = 0.80 eV). In X-ray image acquisition with Schottky-type linear array polycrystalline CdZnTe X-ray detector, we have obtained the promising results and proved the possibility of polycrystalline CdZnTe for applications as a flat panel X-ray detector.  相似文献   

5.
Metal–insulator–semiconductor structures based on n-Hg1−xCdxTe (x = 0.19–0.25) were grown by molecular-beam epitaxy on the GaAs (0 1 3) substrates. Near-surface graded-gap layers with high CdTe content were formed on both sides of the epitaxial HgCdTe. Admittance of these structures was studied experimentally in a wide temperature range (8–150) K. It is shown that an increase in the composition of the working layer and a decrease in temperature lead to a decrease in the frequency of transition to high-frequency behavior of the capacitance–voltage characteristics. The differential resistance of space charge region in the strong inversion increases with the composition of the working layer and for x = 0.22 and 0.25, the differential resistance is limited by the Shockley-Read generation. The values of the differential resistance of space charge region at different frequencies and temperatures were found.  相似文献   

6.
The paper present the numerical analysis of the electrical and optical properties of the mid-wave infrared (MWIR) HgCdTe nBn type detectors with a 3.4 μm cut-off wavelength (at 50% of the initial rise in the response) operating at 230 K. The analysed n+/B/n/N+ structure consists of four HgCdTe layers with n- and p-type barriers. Different structural parameters, as well as compositional and dopant profiles obtained in molecular beam epitaxy (MBE) and metal organic chemical vapour deposition (MOCVD) techniques were modelled with emphasis on conduction band and valence band-offset which determines the proper construction of the nBn type devices. The barrier must prevent the flow of the electron current from the cap region to the absorber while simultaneously ensure the flow and collection of thermally and optically generated holes from the absorber to the cap region. It was shown that proper p-type doping of the barrier reduce the valence band-offset and increase the offset in the conduction band leading to the optimal detector architecture.Theoretical results were related to the experimental data of the MWIR n+/B/n/N+ photodetectors grown by MOCVD. Dark currents of the first fabricated devices are limited by undesirable iodine diffusion from cap layer to the barrier. However, the nBn architecture might be a promising solution for HgCdTe infrared detectors grown by MOCVD, mainly due to the possibility of in situ acceptor doping of the barrier.  相似文献   

7.
Optical absorption and photoluminescence spectroscopies are standard tools for analysis of HgHg1−xCdxTe epitaxial layers in terms of homogeneity of the mole-fraction (x). For technological relevant layer thicknesses of ∼10 μm, both techniques may show dissimilar results, in particular if doped layers are investigated. This is due to defect levels, which impact to the results obtained by both techniques in different ways. We systematically investigate this behavior by analyzing two sets of HgCdTe layers, one set intrinsically doped by Hg-vacancies, the other extrinsically doped by arsenic (As). A model is outlined and applied to the experimental results, which consistently explains even non-monotonous temperature-shifts of the spectra. Eventually, guidelines for optical homogeneity tests are given. While transmission measurements are most reliable, when carried out at low temperature, where the defect level are frozen out, photoluminescence provides best results at ambient temperature, where band-states are increasingly populated. Both approaches help to reveal intrinsic material properties.  相似文献   

8.
In order to well study the influence of the thickness and doping concentration on optical properties of transmission-mode GaAs photocathode, three exponential-doping and one uniform-doping photocathode modules were prepared by molecular beam epitaxy with a structure of glass/Si3N4/Ga1 ? xAlxAs/GaAs. By use of the spectrophotometer, the optical properties were separately measured including the reflectivity and transmissivity curves. Based on thin film optical principles, the optical properties and their integral values are calculated by matrix formula for the four-layer photocathode module. The result shows that the antireflection and window layers affect the peak and valley of the optical property curves and the active layer influences the absorptivity values of the transmission-mode cathode modules. The photocathode module has high absorptivity within the response waveband when the optimal module has the Si3N4 antireflection layer of 0.1 μm, the Ga1 ? xAlxAs window layer of more than 0.4 μm, and the GaAs active layer of 1.5 μm–2 μm and low average doping concentration.  相似文献   

9.
The pyrochlore Lanthanum Zirconium Oxide, La2Zr2O7 (LZO), has been developed as a potential replacement barrier layer in the standard RABiTS three-layer architecture of physical vapor deposited CeO2 cap/YSZ barrier/Y2O3 seed on Ni–5%W metal tape. The main focus of this research is to ascertain whether: (i) we can further improve the barrier properties of LZO; (ii) we can modify the LZO cation ratio and still achieve a high level of performance; and (iii) it is possible to reduce the number of buffer layers. We report a systematic investigation of the LZO film growth with varying compositions of La:Zr ratio in the La2O3–ZrO2 system. Using a metal–organic deposition (MOD) process, we have grown smooth, crack-free, epitaxial thin films of LaxZr1?xOy (x = 0.2–0.6) on standard Y2O3 buffered Ni–5W substrates in short lengths. Detailed XRD studies indicate that a single epitaxial LZO phase with only (0 0 1) texture can be achieved in a broad compositional range of x = 0.2–0.6 in LaxZr1?xOy. Both CeO2 cap layers and MOD–YBCO films were grown epitaxially on these modified LZO barriers. High critical currents per unit width, Ic of 274–292 A/cm at 77 K and self-field were achieved for MOD–YBCO films grown on LaxZr1?xOy (x = 0.4–0.6) films. These results indicate that LZO films can be grown with a broad compositional range and still support high performance YBCO coated conductors. In addition, epitaxial MOD LaxZr1?xOy (x = 0.25) films were grown directly on biaxially textured Ni–3W substrates. About 3 μm thick YBCO films grown on a single MOD–LZO buffered Ni–3W substrates using pulsed laser deposition show a critical current density, Jc, of 0.55 MA/cm2 (Ic of 169 A/cm) at 77 K and 0.01 T. This work holds promise for a route for producing simplified buffer architecture for RABiTS based YBCO coated conductors.  相似文献   

10.
We fabricated a heavily Bi-doped (xBi  2 × 1019 cm−3) PbTe p–n homojunction diode that detects mid-infrared wavelengths by the temperature difference method (TDM) under controlled vapor pressure (CVP) liquid phase epitaxy (LPE). The photocurrent density produced by the heavily Bi-doped diode sample is approximately 20 times and 3 times greater than that produced by an undoped and heavily In-doped sample, respectively. By varying the ambient temperature from 15 K to 225 K, the detectable wavelength is tunable from 6.18 μm to 4.20 μm. The peak shift of the detectable wavelength is shorter in the heavily Bi-doped sample than in the undoped sample, consistent with our previously proposed model, in which Bi–Bi nearest donor–acceptor pairs are formed in the heavily Bi-doped PbTe liquid phase epitaxial layer. Current–voltage (IV) measurements of the heavily Bi-doped diode sample under infrared exposure at 77 K indicated a likely leak in the dark current, arising from the deeper levels. From the dark IV measurements, the activation energy of the deep level was estimated as 0.067 eV, close to the energy of the deep Tl-doped PbTe acceptor layer. We conclude that the deep level originates from the Tl-doped p-type epitaxial layer.  相似文献   

11.
Spectral sensitivity dependencies of Hg1−xCdxTe (0.20  x  0.25) backside illuminated planar photodiodes were investigated at T = 80 K to study their longwavelength edge features. It was shown that the longwavelength part of these spectral dependencies is mainly formed by the exponential wavelength dependence of the optical transitions. Empirical dependencies of cut-off wavelengths at different values (λmax, λ0.5, λ0.9) were obtained. The influence of the epitaxial layer thickness on the maximum sensitivity position was also studied.  相似文献   

12.
The surface passivation of low-temperature-deposited SiNx films has been investigated in PIN type In0.83Ga0.17As photodiodes. In contrast to SiNx films (330 °C) fabricated by PECVD (Plasma enhanced chemical vapor deposition), the low-temperature-deposited SiNx films (75 °C) fabricated by ICPCVD (Inductively coupled plasma chemical vapor depositon) have a good effect on passivation of In0.83Ga0.17As photodiodes, which caused reductions of dark current as large as 2–3 orders of magnitude at the same test temperature 200 K. The effects of low-temperature-deposited SiNx passivations with lowrate (∼16 nm/min) model were compared to the ones with highrate (∼100 nm/min) model. SiNx films with lowrate model have a better effect on reducing dark current of the photodiodes. The different SiNx films were studied by SIMS. The results show that the content of oxides in SiNx layer fabricated by PECVD is 2 orders of magnitude more than that in SiNx layer fabricated by ICPCVD which could be the reason that low-temperature-deposited SiNx passivation leads to higher performance. Further, the dark current density of the photodiodes with lowrate-deposited SiNx passivations does not show the dependence on the perimeter-to-area(P/A) of the junction.  相似文献   

13.
In this investigation the composite SiOx〈Ti〉 films were prepared by the thermal evaporation of a mixture of silicon oxide (SiO2) and Тi powders. The optical transmission of the films in the IR spectral range and their temperature-sensitive properties are studied. By varying the contents of the metal in vaporizer and time of evaporation it is possible to obtain SiOx〈Ti〉 layers with resistance (for monopixel of 0.8 × 1 mm) from tens kOhms to MOhms and a value of the temperature coefficient of resistance (TCR) is equal to −2.22% K−1. IR spectrum of SiOx〈Ti〉 film is characterized by a broad absorption band in the range of 8–12 μm which is associated with the Si–O–Si stretching mode.Investigations of the effect of gamma irradiation on SiOx〈Ti〉 films have shown that their temperature-sensitive properties, in particular TCR does not change up to a dose of 106 Gy.These results suggest that SiOx〈Ti〉 films can be used as materials for production of radiation-resistant thermosensitive detectors operated in radiation fields of γ-radiation and combining functions of IR-absorption and formation of an electric signal.  相似文献   

14.
In this paper, quantum efficiency (QE) measurements performed on type-II InAs/GaSb superlattice (T2SL) photodiodes operating in the mid-wavelength infrared domain, are reported. Several comparisons were made in order to determine the SL structure showing optimum radiometric performances: same InAs-rich SL structure with different active zone thicknesses (from 0.5 μm to 4 μm) and different active zone doping (n-type versus p-type), same 1 μm thick p-type active zone doping with different SL designs (InAs-rich versus GaSb-rich and symmetric SL structures). Best result was obtained for the p-type doped InAs-rich SL photodiode, with a 4 μm active zone thickness, showing a QE that reaches 61% at λ = 2 μm and 0 V bias voltage.  相似文献   

15.
Photodiodes of InSb were fabricated on an epitaxial layer grown using molecular beam epitaxy (MBE). Thermal cleaning of the InSb (0 0 1) substrate surface, 2° towards the (1 1 1) B plane, was performed to remove the oxide. Photodiode properties of МВЕ-formed epitaxial InSb were demonstrated. Zero-bias resistance area product (R0A) measurements were taken at 80 K under room temperature background for a pixel size of 100 μm × 100 μm. Values were as high as 4.36 × 104 Ω/cm2, and the average value of R0A was 1.66 × 104 Ω/cm2. The peak response was 2.44 (A/W). The epitaxial InSb photodiodes were fabricated using the same process as bulk crystal InSb diodes with the exception of the junction formation method. These values are comparable to the properties of bulk crystal InSb photodiodes.  相似文献   

16.
A series of Ge–Te–CuI far infrared transmitting chalcohalide glasses were prepared by traditional melt-quenching method and the glass-forming region was determined. Properties measurements include density, DTA, XRD, SEM, Vis–NIR and infrared (IR) transmission spectra. The results show that with the addition of CuI, the glass-forming ability is improved and nearly 30 mol% CuI can be dissolved into the Ge20Te80?x(CuI)x glass system. The density and glass transition temperature of Ge–Te–CuI chalcohalide glasses are within the range 5.459–5.960 g cm?3 and 150–184 °C, respectively. These glasses all have wide optical transmission window from 1.8 to 25 μm and offer an alternative solution for far infrared transmitting materials.  相似文献   

17.
The goal of this study is to achieve absolute line intensities for the strong 5.7 and 3.6 μm bands of formaldehyde and to generate, for both spectral regions, an accurate list of line positions and intensities. Both bands are now used for the infrared measurements of this molecule in the atmosphere. However, in the common access spectroscopic databases there exists, up to now, no line parameters for the 5.7 μm region, while, at 3.6 μm, the quality of the line parameters is quite unsatisfactory. High-resolution Fourier transform spectra were recorded for the whole 1600–3200 cm?1 spectral range and for different path-length-pressure products conditions. Using these spectra, a large set of H2CO individual line intensities was measured simultaneously in both the 5.7 and 3.6 μm spectral regions. From this set of experimental line strength which involve, at 5.7 μm the ν2 band and, at 3.6 μm, the ν1 and ν5 bands together with nine dark bands, it has been possible to derive a consistent set of line intensity parameters for both the 5.7 and 3.6 μm spectral regions. These parameters were used to generate a line list in both regions. For this task, we used the line positions generated in [Margulés L, Perrin A, Janeckovà R, Bailleux S, Endres CP, Giesen TF, et al. Can J Phys, accepted] and [Perrin A, Valentin A, Daumont L, J Mol Struct 2006;780–782:28–42] for the 5.7 and 3.6 μm, respectively. The calculated band intensities derived for the 5.7 and 3.6 μm bands are in excellent agreement with the values achieved recently by medium resolution band intensity measurements. It has to be mentioned that intensities in the 3.6 μm achieved in this work are on the average about 28% stronger than those quoted in the HITRAN or GEISA databases. Finally, at 3.6 μm the quality of the intensities was significantly improved even on the relative scale, as compared to our previous study performed in 2006.  相似文献   

18.
Using double heterojunction structure with linearly graded InxAl1–xAs as buffer layer and In0.9Al0.1As as cap layer, wavelength extended In0.9Ga0.1As detectors with cutoff wavelength of 2.88 μm at room temperature have been grown by using gas source molecular beam epitaxy, their characteristics have been investigated in detail and compared with the detectors cutoff at 2.4 μm with similar structure as well as commercial InAs detectors. Typical resistance area product R0A of the detectors reaches 3.2 Ω cm2 at 290 K. Measured peak detectivity reaches 6.6E9 cm Hz1/2/W at room temperature.  相似文献   

19.
An InGaAS/GaAs heterostructure transistor utilizing a gradedInxGa1  xAs channel grown by low-pressure metal-olorganic chemical vapor deposition has been demonstrated. A negative differential resistance (NDR) phenomenon is observed. Electron mobilities are significantly improved by using the graded InGaAs channel. For the In composition varying fromx =  0.25 (at the buffer–channel interface) to x =  0.1 (at the spacer–channel interface) structure, a peak extrinsic transconductance of 24.6 S mm  1(atVDS =  6.5 V,VGSstep =   0.5 mV) and a saturation current density as high as 555 mA mm  1for a gate length of 1.5 μ m are obtained.  相似文献   

20.
We study the mechanisms of photoconductivity in graphene layer–graphene nanoribbon–graphene layer (GL–GNR–GL) structures with the i-type gapless GL layers as sensitive elements and I-type GNRs as barrier elements. The effects of both an increase in the electron and hole densities under infrared illumination and the electron and hole heating and cooling in GLs are considered. The device model for a GL–GNR–GL photodiode is developed. Using this model, the dark current, photocurrent, and responsivity are calculated as functions of the structure parameters, temperature, and the photon energy. The transition from heating of the electron–hole plasma in GLs to its cooling by changing the incident photon energy can result in the change of the photoconductivity sign from positive to negative. It is demonstrated that GL–GNR–GL photodiodes can be used in effective infrared and terahertz detectors operating at room temperature. The change in the photoconductivity sign can be used for the discrimination of the incident radiation with the wavelength 2–3 μm and 8–12 μm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号