首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
We determined, for the first time, the room temperature phonon energy related to the F2g vibration mode (ωSRS(12C) ~ 1333.2 cm–1) in a mono‐crystalline single‐isotope CVD 12C‐diamond crystal by means of stimulated Raman scattering (SRS) spectroscopy. Picosecond one‐micron excitation using a Nd3+:Y3Al5O12‐laser generates a nearly two‐octave spanning SRS frequency comb (~12000 cm–1) consisting of higher‐order Stokes and anti‐Stokes components. The spacing of the spectral lines was found to differ by ΔωSRS ~ 0.9 cm–1 from the comb spacing (ωSRS(natC) ~ 1332.3 cm–1) when pumping a conventional CVD diamond crystal with a natural composition of the two stable carbon isotopes 12C (98.93%) and 13C (1.07%). (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

2.
Successful X‐ray photon correlation spectroscopy studies often require that signals be optimized while minimizing power density in the sample to decrease radiation damage and, at free‐electron laser sources, thermal impact. This suggests exploration of scattering outside the Fraunhofer far‐field diffraction limit d2R, where d is the incident beam size, λ is the photon wavelength and R is the sample‐to‐detector distance. Here it is shown that, in an intermediate regime d2/λ > Rdξ/λ, where ξ is the structural correlation length in the material, the ensemble averages of the scattered intensity and of the structure factor are equal. Similarly, in the regime d2/λ > Rdξ(τ)/λ, where ξ(τ) is a time‐dependent dynamics length scale of interest, the ensemble‐averaged correlation functions g1(τ) and g2(τ) of the scattered electric field are also equal to their values in the far‐field limit. This broadens the parameter space for X‐ray photon correlation spectroscopy experiments, but detectors with smaller pixel size and variable focusing are required to more fully exploit the potential for such studies.  相似文献   

3.
Solvent, temperature, and high pressure influence on the rate constant of homo‐Diels–Alder cycloaddition reactions of the very active hetero‐dienophile, 4‐phenyl‐1,2,4‐triazolin‐3,5‐dione (1), with the very inactive unconjugated diene, bicyclo[2,2,1]hepta‐2,5‐diene (2), and of 1 with some substituted anthracenes have been studied. The rate constants change amounts to about seven orders of magnitude: from 3.95.10?3 for reaction (1+2) to 12200 L mol?1 s?1 for reaction of 1 with 9,10‐dimethylanthracene (4e) in toluene solution at 298 K. A comparison of the reactivity (ln k2) and the heat of reactions (?r‐nH) of maleic anhydride, tetracyanoethylene and of 1 with several dienes has been performed. The heat of reaction (1+2) is ?218 ± 2 kJ mol?1, of 1 with 9,10‐dimethylanthracene ?117.8 ± 0.7 kJ mol?1, and of 1 with 9,10‐dimethoxyanthracene ?91.6 ±0.2 kJ mol?1. From these data, it follows that the exothermicity of reaction (1+2) is higher than that with 1,3‐butadiene. However, the heat of reaction of 9,10‐dimethylanthracene with 1 (?117.8 kJ mol?1) is nearly the same as that found for the reaction with the structural C=C counterpart, N‐phenylmaleimide (?117.0 kJ mol?1). Since the energy of the N=N bond is considerably lower (418 kJ/bond) than that of the C=C bond (611 kJ/bond), it was proposed that this difference in the bond energy can generate a lower barrier of activation in the Diels–Alder cycloaddition reaction with 1. Linear correlation (R = 0.94) of the solvent effect on the rate constants of reaction (1+2) and on the heat of solution of 1 has been observed. The ratio of the volume of activation (?V) and the volume of reaction (?Vr‐n) of the homo‐Diels–Alder reaction (1+2) is considered as “normal”: ?V/?Vr‐n = ?25.1/?30.95 = 0.81. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Picosecond time‐resolved X‐ray diffraction has been used to study the nanoscale thermal transportation dynamics of bare gold nanocrystals and thiol‐based self‐assembled monolayer (SAM)‐coated integrated gold nanocrystals on a SiO2 glass substrate. A temporal lattice expansion of 0.30–0.33% was observed in the bare and SAM‐coated nanocrystals on the glass substrate; the thermal energy inside the gold nanocrystals was transported to the contacted substrate through the gold–SiO2 interface. The interfacial thermal conductivity between the single‐layered gold nanocrystal film and the SiO2 substrate is estimated to be 45 MW m?2 K?1 from the decay of the Au 111 peak shift, which was linearly dependent on the transient temperature. For the SAM‐coated gold nanocrystals, the thermal dissipation was faster than that of the bare gold nanocrystal film. The thermal flow from the nanocrystals to the SAM‐coated molecules promotes heat dissipation from the laser‐heated SAM‐coated gold nanocrystals. The thermal transportation of the laser‐heated SAM‐coated gold nanocrystal film was analyzed using the bidirectional thermal dissipation model.  相似文献   

5.
The SUT‐NANOTEC‐SLRI beamline was constructed in 2012 as the flagship of the SUT‐NANOTEC‐SLRI Joint Research Facility for Synchrotron Utilization, co‐established by Suranaree University of Technology (SUT), National Nanotechnology Center (NANOTEC) and Synchrotron Light Research Institute (SLRI). It is an intermediate‐energy X‐ray absorption spectroscopy (XAS) beamline at SLRI. The beamline delivers an unfocused monochromatic X‐ray beam of tunable photon energy (1.25–10 keV). The maximum normal incident beam size is 13 mm (width) × 1 mm (height) with a photon flux of 3 × 108 to 2 × 1010 photons s?1 (100 mA)?1 varying across photon energies. Details of the beamline and XAS instrumentation are described. To demonstrate the beamline performance, K‐edge XANES spectra of MgO, Al2O3, S8, FeS, FeSO4, Cu, Cu2O and CuO, and EXAFS spectra of Cu and CuO are presented.  相似文献   

6.
Three‐photon absorption (3PA) properties of symmetric‐type carbazole derivatives show great potential for application in light‐activated therapy and optical limiting. A novel symmetrical carbazole derivative (abbreviated as POCP) with end‐groups of 1,10‐phenanthroline rings as the donor moieties, chained via carbon–nitrogen (C = N) double bond, has been synthetized and its three photon absorption properties has been also determined by using a Q‐switched Nd: YAG laser pumped with 30 ps pulses at 1064 nm in dimethylformamide. The measurement of 3PA cross‐section of this compound is performed by open aperture Z‐scan and σ3PA is 481 × 10–78 cm6 ? s2/photon2 for the transition S0S1. The influence of the molecular structure of this compound on three‐photon absorption cross‐sections is discussed micromechanically by Austin model 1 and Zerner's Intermediate Neglect of Differential Overlap/S method. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
Polarized Raman spectroscopy was used to investigate the room‐temperature phonon characteristics of a series of rare‐earth arsenate (REAsO4, RE = Sm, Eu, Gd, Tb, Dy, Ho, Tm, Yb, and Lu) single crystals. The Raman data were interpreted in a systematic manner based on the known tetragonal zircon structure of these compounds, and assignments and correlations were made for the observed bands. We found that the wavenumbers of the internal modes of the AsO4 tetrahedron increased with increasing atomic number. This increase seems to be correlated to the contraction of the RE–O bond length. For three out of four lattice wavenumbers observed, this tendency was not nearly so marked as in the case of the internal mode wavenumber. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Based on energetic compound [1,2,5]‐oxadiazolo‐[3,4‐d]‐pyridazine, a series of functionalized derivatives were designed and first reported. Afterwards, the relationship between their structure and performance was systematically explored by density functional theory at B3LYP/6‐311 g (d, p) level. Results show that the bond dissociation energies of the weakest bond (N–O bond) vary from 157.530 to 189.411 kJ · mol?1. The bond dissociation energies of these compounds are superior to that of HMX (N–NO2, 154.905 kJ · mol?1). In addition, H1, H2, H4, I2, I3, C1, C2, and D1 possess high density (1.818–1.997 g · cm?3) and good detonation performance (detonation velocities, 8.29–9.46 km · s?1; detonation pressures, 30.87–42.12 GPa), which may be potential explosives compared with RDX (8.81 km · s?1, 34.47 GPa ) and HMX (9.19 km · s?1, 38.45 GPa). Finally, allowing for the explosive performance and molecular stability, three compounds may be suggested as good potential candidates for high‐energy density materials. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
Graphene‐based phosphorus‐doped carbon (GPC) is prepared through a facile and scalable thermal annealing method by triphenylphosphine and graphite oxide as precursor. The P atoms are successfully doped into few layer graphene with two forms of P–O and P–C bands. The GPC used as anode material for Na‐ion batteries delivers a high charge capacity 284.8 mAh g?1 at a current density of 50 mA g?1 after 60 cycles. Superior cycling performance is also shown at high charge?discharge rate: a stable charge capacity 145.6 mAh g?1 can be achieved at the current density of 500 mA g?1 after 600 cycles. The result demonstrates that the GPC electrode exhibits good electrochemical performance (higher reversible charge capacity, super rate capability, and long‐term cycling stability). The excellent electrochemical performance originated from the large interlayer distance, large amount of defects, vacancies, and active site caused by P atoms doping. The relationship of P atoms doping amount with the Na storage properties is also discussed. This superior sodium storage performance of GPC makes it as a promising alternative anode material for sodium‐ion batteries.  相似文献   

10.
The ―NH2, ―NO2, ―NHNO2, ―C(NO2)3 and ―CF(NO2)2 substitution derivatives of 4,4′,5,5′‐tetranitro‐2,2′‐1H,1′H‐2,2′‐biimidazole were studied at B3LYP/aug‐cc‐pVDZ level of density functional theory. The crystal structures were obtained by molecular mechanics (MM) methods. Detonation properties were evaluated using Kamlet–Jacobs equations based on the calculated density and heat of formation. The thermal stability of the title compounds was investigated via the energy gaps (?ELUMO ? HOMO) predicted. Results show that molecules T5 (D = 10.85 km·s?1, P = 57.94 GPa) and T6 (D = 9.22 km·s?1, P = 39.21 GPa) with zero or positive oxygen balance are excellent candidates for high energy density oxidizers (HEDOs). All of them appear to be potential explosives compared with the famous ones, octahydro‐1,3,5,7‐tetranitro‐1,3,5,7‐tetraazocane (HMX, D = 8.96 km·s?1, P = 35.96 GPa) and hexanitrohexaazaisowurtzitane (CL‐20, D = 9.38 km·s?1, P = 42.00 GPa). In addition, bond dissociation energy calculation indicates that T5 and T6 are also the most thermally stable ones among the title compounds. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
LiFe1 − xMnxPO4 olivines are promising material for improved performance of Li‐ion batteries. Spin–phonon coupling of LiFe1 − xMnxPO4 (x = 0, 0.3, 0.5) olivines is studied through temperature‐dependent Raman spectroscopy. Among the observed phonon modes, the external mode at ~263 cm−1 is directly correlated with the motions of magnetic Fe2+/Mn2+ ions. This mode displays anomalous temperature‐dependent behavior near the Néel temperature, indicating a coupling of this mode with spin ordering. As Mn doping increases, the anomalous behavior becomes clearly weaker, indicating the spin–phonon coupling quickly decreases. Our analyses show that the quick decrease of spin–phonon coupling is due to decrease of the strength of spin–phonon coupling, but not change of spin‐ordering feature with Mn doping. Importantly, we suggest that the low electrochemical activity of LiMnPO4 is correlated with the weak spin–phonon coupling strength, but not with the weak ferromagnetic ground state. Our work would play an important role as a guide in improving the performances of future Li‐ion batteries. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
First‐order and multiphonon Raman active excitations are studied in YbVO3 as a function of temperature in the orthorhombic and monoclinic phases. Below T ≃ 170 K, a G‐type orbital ordering with a concomitant monoclinic transition occurs. They enhance the phonon polarizabilities, allowing the resolution of room‐temperature bands, and activate new excitations around 700 cm−1. Below T ∼ 65 K, the 700 cm−1 excitations disappear, indicating a C‐type orbital ordering and a return to the orthorhombic structure. The observed phonon combinations around 1400 cm−1 with a dominant Jahn‐Teller vibration at ∼690 cm−1 reflect a possible orbiton‐phonon coupling. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
Here, a microwave‐assisted approach has been demonstrated to rapidly prepare magnetic Pd–CoFe2O4–graphene (GE) composite nanosheets in ethylene glycol (EG) solvent. The generation of both Pd and CoFe2O4 nanoparticles is accompanied with the reduction process of graphene oxide (GO) by EG. The surface morphologies and chemical composition of the composite nanosheets are characterized by transmission electron microscopy (TEM), energy‐dispersive X‐ray spectrometer (EDS), powder X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FTIR) measurements. The as‐prepared Pd–CoFe2O4–GE composite nanosheets exhibit a remarkable catalytic activity towards the reduction of 4‐nitrophenol by sodium borohydride (NaBH4) at room temperature. The apparent kinetic rate constant (K app) of this catalytic reaction could reach about 11.0 × 10?3 s?1. Moreover, the CoFe2O4 component exhibits a magnetic property, which could make the Pd–CoFe2O4–GE composite nanocatalysts separated from the suspension system. The catalytic conversion of the 4‐nitrophenol to 4‐aminophenol could reach 87.2% after four cycles. This work presents a simple, rapid, and versatile method to fabricate both metal and spinel‐type complex oxides on GE nanosheets, providing a new opportunity for their applications in the recyclable catalytic reaction.  相似文献   

14.
Cleavage of disulfide bonds is a common method used in linking peptides to proteins in biochemical reactions. The structures, internal rotor potentials, bond energies, and thermochemical properties (ΔfH°, S°, and Cp(T)) of the S–S bridge molecules CH3SSOH and CH3SS(=O)H and the radicals CH3SS?=O and C?H2SSOH that correspond to H‐atom loss are determined by computational chemistry. Structure and thermochemical parameters (S° and Cp(T)) are determined using density functional Becke, three‐parameter, Lee–Yang–Parr (B3LYP)/6‐31++G (d, p), B3LYP/6‐311++G (3df, 2p). The enthalpies of formation for stable species are calculated using the total energies at B3LYP/6‐31++G (d, p), B3LYP/6‐311++G (3df, 2p), and the higher level composite CBS–QB3 levels with work reactions that are close to isodesmic in most cases. The enthalpies of formation for CH3SSOH, CH3SS(=O)H are ?38.3 and ?16.6 kcal mol?1, respectively, where the difference is in enthalpy RSO–H versus RS(=O)–H bonding. The C–H bond energy of CH3SSOH is 99.2 kcal mol?1, and the O–H bond energy is weaker at 76.9 kcal mol?1. Cleavage of the weak O–H bond in CH3SSOH results in an electron rearrangement upon loss of the CH3SSO–H hydrogen atom; the radical rearranges to form the more stable CH3SS· = O radical structure. Cleavage of the C–H bond in CH3SS(=O)H results in an unstable [CH2SS(=O)H]* intermediate, which decomposes exothermically to lower energy CH2 = S + HSO. The CH3SS(=O)–H bond energy is quite weak at 54.8 kcal mol?1 with the H–C bond estimated at between 91 and 98 kcal mol?1. Disulfide bond energies for CH3S–SOH and CH3S–S(=O)H are low: 67.1 and 39.2 kcal mol?1. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
The experimental and theoretical study on the structures and vibrations of 5‐fluoro‐salicylic acid and 5‐chloro‐salicylic acid (5‐FSA and 5‐ClSA, C7H5FO3 and C7H5ClO3) is presented. The Fourier transform infrared spectra (4000–400 cm−1) and the Fourier transform Raman spectra (4000–50 cm−1) of the title molecules in the solid phase were recorded. The molecular structures, vibrational wavenumbers, infrared intensities, Raman intensities and Raman scattering activities were calculated for a pair of molecules linked by the intermolecular O H···O hydrogen bond. The geometrical parameters and energies of 5‐FSA and 5ClSA were obtained for all eight conformers/isomers from density functional theory (DFT) (B3LYP) with 6‐311++G(d,p) basis set calculations. The computational results identified the most stable conformer of 5‐FSA and 5‐ClSA as the C1 form. The complete assignments were performed on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. The spectroscopic and theoretical results were compared with the corresponding properties for 5‐FSA and 5‐ClSA monomers and dimer of C1 conformer. The optimized bond lengths, bond angles and calculated wavenumbers showed the best agreement with the experimental results. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Ethyl 2‐amino‐4,5,6,7‐tetrahydrobenzo[b]thiophene‐3‐carboxylate [C11H15NO2S] was synthesized by the Gewald method. Its single crystals were grown from an alcohol/ethyl acetate solution at 15 °C and characterized using IR and 1H‐NMR. These single crystals were irradiated for 72 h at 298 K by a 60Co gamma source with a dose speed of 0.864 kGy/h. After irradiation, electron spin resonance (ESR) measurements were carried out to study radiation‐induced radicals in the temperature range from 120 to 450 K. Additionally, for the single crystal, ESR angular dependencies were measured in the xy, xz and yz planes of the substance. This irradiated single crystal was analyzed based on the ESR spectra. Analysis of the spectra revealed that the radical was formed by a C–H bond fission at the carbon end of the substance. It was also observed that the color of the sample changed after irradiation. The hyperfine and g parameters were determined from the experimental spectra. It was inferred from these results that the hyperfine parameters and g value exhibited anisotropic behavior. The average values of these parameters were calculated as follows: g = 2.0088, AH1=H2 = 20.70 G, AH3=H4 = 10.80 G, AHa = 4.59 G, AHb = 3.24 G and, AN = 6.10 G. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
Orthorhombic PbCO3, known as natural crystal cerussite, is presented as a new Stimulated Raman Scattering (SRS)‐active crystal. With picosecond laser pumping high‐order Raman‐induced χ(3) generation is observed. All registered Stokes and anti‐Stokes sidebands in the visible and near‐IR are identified and attributed to the SRS‐promoting phonon mode A1g of the carbonate group, with ωSRS ≈ 1054 cm−1. The first Stokes steady‐state Raman gain coefficient in the visible spectral range is estimated as well to a value not less than 4.6 cm·GW−1.  相似文献   

18.
The resonant scattering and diffraction beamline P09 at PETRA III at DESY is equipped with a 14 T vertical field split‐pair magnet. A helium‐3 refrigerator is available that can be fitted inside the magnet's variable‐temperature insert. Here the results of a series of experiments aimed at determining the beam conditions permitting operations with the He‐3 insert are presented. By measuring the tetragonal‐to‐orthorhombic phase transition occurring at 2.1 K in the Jahn–Teller compound TmVO4, it is found that the photon flux at P09 must be attenuated down to 1.5 × 109 photons s?1 for the sample to remain at temperatures below 800 mK. Despite such a reduction of the incident flux and the subsequent use of a Cu(111) analyzer, the resonant X‐ray magnetic scattering signal at the Tm LIII absorption edge associated with the spin‐density wave in TmNi2B2C below 1.5 K is intense enough to permit a complete study in magnetic field and at sub‐Kelvin temperatures to be carried out.  相似文献   

19.
In this work, the experimental and theoretical vibrational spectra of N1‐methyl‐2‐chloroaniline (C7H8NCl) were studied. FT‐IR and FT‐Raman spectra of the title molecule in the liquid phase were recorded in the region 4000–400 cm?1 and 3500–50 cm?1, respectively. The structural and spectroscopic data of the molecule in the ground state were calculated by using density functional method (B3LYP) with the 6‐311++G(d,p) basis set. The vibrational frequencies were calculated and scaled values were compared with experimental FT‐IR and FT‐Raman spectra. The observed and calculated frequencies are found to be in good agreement. The complete assignments were performed on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. 13C and 1H NMR chemical shifts results were compared with the experimental values. The optimized geometric parameters (bond lengths and bond angles) were given and are in agreement with the corresponding experimental values of aniline and p‐methyl aniline. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
In single crystals of orthorhombic YAlO3, widely known as a host‐matrix for Ln3+‐lasant ions, many‐phonon stimulated Raman scattering interactions as well as different manifestations of cascaded and cross‐cascaded nonlinear χ(3)↔χ(3) processes are initiated by picosecond laser pulses. The scientific and applicative potential of YAlO3 crystals is considerably expanded by the demonstration of its SRS properties. In particular, the studies revealed the manifestation of eight χ(3)‐active vibrational modes. The corresponding Stokes and anti‐Stokes lines have been assigned and the steady‐state Raman gain coefficients related to the strongest phonon mode have been estimated. In addition, a short review presents the stimulated emission channels of its Ln3+‐ions together with some χ(3)‐nonlinear laser properties of crystals belonging to the binary Y2O3‐Al2O3 system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号