首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of doping heteroatoms on the structure, electronic and adsorption properties of graphene are investigated using density functional theory calculations. Six different doped graphenes (with Al, B, Si, N, P, and S) are considered, and to obtain the interaction and adsorption properties, three sulfur-containing molecules (H2S, SO2, and thiophene) were interacted with selected graphenes. The adsorption energies (E ad) in the gas phase and solvents show the exothermic interaction for all complexes. The maximum E ad values are observed for aluminum doped graphene (AG) and silicon doped graphene (SiG), and adsorption energies in the solvent are not so different from those in the gas phase. NBO calculations show that the AG and SiG complexes have the highest E (2) interaction energies and simple graphene (G) and nitrogen doped graphene (NG) have the least E (2) energies. Population analyses show that doping heteroatoms change the energy gap. This gap changes more during the interaction and these changes make these structures useful in sensor devices. All calculated data confirm better adsorption of SO2 by graphenes versus H2S and thiophene. Among all graphenes, AG and then SiG are the best adsorbents for these structures.  相似文献   

2.
《印度化学会志》2022,99(11):100769
Fullerene-C60 and its heteroatom decorated forms have been widely investigated as drug delivery vehicles and for sensor applications. Further, in the literature carboxylated or carboxylic derivatives of fullerenes have found a special place for biological applications due to their promising water-soluble properties. In the scope of this study, we examined the interaction between paracetamol (acetaminophen) which is a widely prescribed drug to manage acute and chronic pain conditions and C60, silicon doped fullerene (SiC59) and (1,2-methanofullerene C60)-61-carboxylic acid (C60-CH-COOH) using density functional theory calculations. Stability evaluations, electronic and structural properties were carried out by analyzing binding energies, frontier molecular orbitals and natural bond orbitals. It was found that silicon doping on the surface of C60 enhanced the adsorption strength of paracetamol and SiC59 is quite sensitive to the presence of paracetamol drug molecule.  相似文献   

3.
4.
First‐principles DFT calculations are carried out to study the changes in structures and electronic properties of two‐dimensional single‐layer graphene in the presence of non‐covalent interactions induced by carbon and boron fullerenes (C60, C70, C80 and B80). Our study shows that larger carbon fullerene interacts more strongly than the smaller fullerene, and boron fullerene interacts more strongly than that of its carbon analogue with the same nuclearity. We find that van der Waals interactions play a major role in governing non‐covalent interactions between the adsorbed fullerenes and graphene. Moreover, a greater extent of van der Waals interactions found for the larger fullerenes, C80 and B80, relative to smaller C60, and consequently, results in higher stabilisation. We find a small amount of electron transfer from graphene to fullerene, which gives rise to a hole‐doped material. We also find changes in the graphene electronic band structures in the presence of these surface‐decorated fullerenes. The Dirac cone picture, such as that found in pristine graphene, is significantly modified due to the re‐hybridisation of graphene carbon orbitals with fullerenes orbitals near the Fermi energy. However, all of the composites exhibit perfect conducting behaviour. The simulated absorption spectra for all of the graphene–fullerene hybrids do not exhibit a significant change in the absorption peak positions with respect to the pristine graphene absorption spectrum. Additionally, we find that the hole‐transfer integral between graphene and C60 is larger than the electron‐transfer integrals and the extent of these transfer integrals can be significantly tuned by graphene edge functionalisation with carboxylic acid groups. Our understanding of the non‐covalent functionalisation of graphene with various fullerenes would promote experimentalists to explore these systems, for their possible applications in electronic and opto‐electronic devices.  相似文献   

5.
Persistent homology is a relatively new tool often used for qualitative analysis of intrinsic topological features in images and data originated from scientific and engineering applications. In this article, we report novel quantitative predictions of the energy and stability of fullerene molecules, the very first attempt in using persistent homology in this context. The ground‐state structures of a series of small fullerene molecules are first investigated with the standard Vietoris–Rips complex. We decipher all the barcodes, including both short‐lived local bars and long‐lived global bars arising from topological invariants, and associate them with fullerene structural details. Using accumulated bar lengths, we build quantitative models to correlate local and global Betti‐2 bars, respectively with the heat of formation and total curvature energies of fullerenes. It is found that the heat of formation energy is related to the local hexagonal cavities of small fullerenes, while the total curvature energies of fullerene isomers are associated with their sphericities, which are measured by the lengths of their long‐lived Betti‐2 bars. Excellent correlation coefficients (>0.94) between persistent homology predictions and those of quantum or curvature analysis have been observed. A correlation matrix based filtration is introduced to further verify our findings. © 2014 Wiley Periodicals, Inc.  相似文献   

6.
DFT calculations are applied for some stable C60, C59Si, and C59N hetero fullerenes. Sn and Ge atoms are doped at the same position of C60. Computations are carried out at the B3LYP/cc pVDZ levels. In this work the effects of the heteroatoms, Si and N, on the structural properties of the fullerene have been studied. The structure, energetic and relative stabilities of the compounds were compared and analyzed with each other. In addition, vibrations spectra of proposed stable neutral species, as well as the infrared intensities are calculated. From the data obtained from calculation, we found that there is strong correlation between the stability of pure C60 fullerene molecule and the numbers of different C-C bonds.  相似文献   

7.
Tremendous advances in nanoscience have been made since the discovery of fullerenes. However, the short timescale of the growth process and high‐energy conditions of synthesis result in severe constraints to investigation of the mechanism of fullerene formation. In this work, we attempted to reveal the formation process by analyzing the variation in the yield of fullerenes under different conditions. Experiments and theoretical analysis show that the formation of fullerenes could be affected by the addition of polycyclic aromatic compounds. It is proposed that the formation of C60 during arc‐discharge synthesis is fragment assembling, while the yield of C2m (m=35, 38, 39) is strongly enhanced by building‐block splicing. In addition, several features of the building blocks are put forward to predict the extent of their influence to the formation of larger fullerenes C2n (n≥42). This work not only provides essential insight into the formation process of fullerenes, but more importantly also paves the way to improving the yield of larger fullerenes selectively.  相似文献   

8.
The production, isolation, and spectroscopic characterization of a new Dy3N@C80 cluster fullerene that exhibits three isomers ( 1 – 3 ) is reported for the first time. In addition, the third isomer ( 3 ) forms a completely new C80 cage structure that has not been reported in any endohedral fullerenes so far. The isomeric structures of the Dy3N@C80 cluster fullerene were analyzed by studying HPLC retention behavior, laser desorption time‐of‐flight (LD‐TOF) mass spectrometry, and UV‐Vis‐NIR and FTIR spectroscopy. The three isomers of Dy3N@C80 were all large band‐gap (1.51, 1.33, and 1.31 eV for 1 – 3 , respectively) materials, and could be classified as very stable fullerenes. According to results of FTIR spectroscopy, the Dy3N@C80 (I) ( 1 ) was assigned to the fullerene cage C80:7 (Ih), whereas Dy3N@C80 (II) ( 2 ) had the cage structure of C80:6 (D5h). The most probable cage structure of Dy3N@C80 (III) ( 3 ) was proposed to be C80:1 (D5d). The significant differences between Dy3N@C80 and other reported M3N@C80 (M=Sc, Y, Gd, Tb, Ho, Er, Tm) cluster fullerenes are discussed in detail, and the strong influence of the metal on the nitride cluster fullerene formation is concluded.  相似文献   

9.
The activation of oxygen molecules on boron‐doped C60 fullerene (C59B) and the subsequent water formation reaction are systematically investigated by using hybrid density functional calculations. Results indicate that C59B shows a favorable ability to activate oxygen molecules both kinetically and thermodynamically. The oxygen molecule is first adsorbed on the boron atom, which is identified to be the most reactive site in C59B for O2 adsorption because of its high positive charge and spin density. The adsorption structure C59B?O2 can further isomerize to form two products with small reaction barriers. Water formation reactions upon these two structures are energetically favorable and suggest a four‐electron mechanism for the oxygen reduction reaction catalyzed by C59B. This work provides a reliable theoretical insight into the catalytic properties of boron‐doped fullerene, which is believed to be helpful to explore fullerene catalysts.  相似文献   

10.
Chiral induction has been an important topic in chemistry, not only for its relevance in understanding the mysterious phenomenon of spontaneous symmetry breaking in nature but also due to its critical implications in medicine and the chiral industry. The induced chirality of fullerenes by host–guest interactions has been rarely reported, mainly attributed to their chiral resistance from high symmetry and challenges in their accessibility. Herein, we report two new pairs of chiral porous aromatic cages (PAC), R- PAC-2 , S- PAC-2 (with Br substituents) and R- PAC-3 , S- PAC-3 (with CH3 substituents) enantiomers. PAC-2 , rather than PAC-3 , achieves fullerene encapsulation and selective binding of C70 over C60 in fullerene carbon soot. More significantly, the occurrence of chiral induction between R- PAC-2 , S- PAC-2 and fullerenes is confirmed by single-crystal X-ray diffraction and the intense CD signal within the absorption region of fullerenes. DFT calculations reveal the contribution of electrostatic effects originating from face-to-face arene-fullerene interactions dominate C70 selectivity and elucidate the substituent effect on fullerene encapsulation. The disturbance from the differential interactions between fullerene and surrounding chiral cages on the intrinsic highly symmetric electronic structure of fullerene could be the primary reason accounting for the induced chirality of fullerene.  相似文献   

11.
Extraction with 2‐aminoethanol is an inexpensive method for removing empty cage fullerenes from the soluble extract from electric‐arc‐generated fullerene soot that contains endohedral metallofullerenes of the type Sc3N@C2n (n=34, 39, 40). Our method of separation exploits the fact that C60, C70, and other larger, empty cage fullerenes are more susceptible to nucleophilic attack than endohedral fullerenes and that these adducts can be readily extracted into 2‐aminoethanol. This methodology has also been employed to examine the reactivity of the mixture of soluble endohedral fullerenes that result from doping graphite rods used in the Krätschmer–Huffman electric‐arc generator with the oxides of Y, Lu, Dy, Tb, and Gd. For example, with Y2O3, we were able to detect by mass spectrometry several new families of endohedral fullerenes, namely Y3C108 to Y3C126, Y3C107 to Y3C125, Y4C128 to Y4C146, that resisted reactivity with 2‐aminoethanol more than the empty cage fullerenes and the mono‐ and dimetallo fullerenes. The discovery of the family Y3C107 to Y3C125 with odd numbers of carbon atoms is remarkable, since fullerene cages must involve even numbers of carbon atoms. The newly discovered families of endohedral fullerenes with the composition M4C2n (M=Y, Lu, Dy, Tb, and Gd) are unusually resistant to reaction with 2‐aminoethanol. Additionally, the individual endohedrals, Y3C112 and M3C102 (M=Lu, Dy, Tb and Gd), were remarkably less reactive toward 2‐aminoethanol.  相似文献   

12.
The absorption feasibility of benzene molecule in the C24, Si@C24, Si-doped C24, and C20 fullerenes has been studied based on calculated electronic properties of these fullerenes using Density functional Theory (DFT). It is found that energy of benzene adsorption on C24, Si@C24, and Si-doped C24 fullerenes were in range of –2.93 and –51.19 kJ/mol with little changes in their electronic structure. The results demonstrated that the C24, Si@C24, and Si-doped C24 fullerenes cannot be employed as a chemical adsorbent or sensor for benzene. Silicon doping cannot significantly modify both the electronic properties and benzene adsorption energy of C24 fullerene. On the other hand, C20 fullerene exhibits a high sensitivity, so that the energy gap of the fullerene is changed almost 89.19% after the adsorption process. We concluded that the C20 fullerene can be employed as a reliable material for benzene detection.  相似文献   

13.
A new salt, (MDABCO+)(C60.?) ( 1 ; MDABCO+=N‐methyldiazabicyclooctanium cation), was obtained as single crystals. The crystal structure of 1 determined at 250 and 100 K showed 3D close packing of fullerenes with eight fullerene neighbors for each C60.?. These neighbors are located at 10.01–10.11 Å center‐to‐center distances (250 K) and van der Waals interfullerene C???C contacts are formed with four fullerene neighbors arranged in the bc plane. Fullerene ordering observed below 160 K is accompanied by the appearance of one and a half independent C60.? and trebling of the unit cell along the b axis. Fullerenes are packed closer to each other at 100 K. As a result, fullerenes are located in the three‐dimensional packing at 9.91–10.12 Å center‐to‐center distances and 18 short interfullerene C???C contacts are formed for each C60.?. Although they are closed packed, fullerenes are not dimerized down to 1.9 K. Magnetic data indicate strong antiferromagnetic coupling of spins in the 70–300 K range with a Weiss temperature of Θ=?118 K. Magnetic susceptibility shows a round maximum at 46 K. Such behavior can be described well by the Heisenberg model for square two‐dimensional antiferromagnetic coupling of spins with an exchange interaction of J/kB=?25.3 K. This magnetic coupling is one of the strongest observed for C60.? salts.  相似文献   

14.
The results of the theoretical investigation of the behavior of fullerenes C20 and C60 inside the icosahedral external shell on example of carbon nanoclusters, C20240 and C60540, are presented in this article. The multiwell potential of interaction between fullerenes in investigated nanoclusters is calculated to reveal the regularities of moving for internal fullerene in the field of holding potential of the external shell. The possible variants of fullerenes C20 and C60 moving between the potential wells are predicted on base of topology data of the fullerenes relative positioning in nanoparticle and analysis of relief of the energy surface of interaction between fullerenes. The formulated prediction is confirmed by the data of the numerical experiment. The investigation of two‐shell fullerenes allows to conclude that the light fullerene С20 will probably jump between the potential wells already at small temperatures (139–400 K) if the external shell is slightly bigger. © 2014 Wiley Periodicals, Inc.  相似文献   

15.
Various advanced catalysts based on sulfur‐doped Fe/N/C materials have recently been designed for the oxygen reduction reaction (ORR); however, the enhanced activity is still controversial and usually attributed to differences in the surface area, improved conductivity, or uncertain synergistic effects. Herein, a sulfur‐doped Fe/N/C catalyst (denoted as Fe/SNC) was obtained by a template‐sacrificing method. The incorporated sulfur gives a thiophene‐like structure (C−S−C), reduces the electron localization around the Fe centers, improves the interaction with oxygenated species, and therefore facilitates the complete 4 e ORR in acidic solution. Owing to these synergistic effects, the Fe/SNC catalyst exhibits much better ORR activity than the sulfur‐free variant (Fe/NC) in 0.5 m H2SO4.  相似文献   

16.
A quantum-chemical simulation of new hybrid nanostructures consisting of regular chains of the small fullerenes C20 and C28 encapsulated into the bulk of achiral zigzag single-walled boron-nitrogen nanotubes [(C20,C28)@BN-NT]. The electronic properties and the nature of interatomic bonds in these nanostructures are analyzed as a function of the fullerene and the distances between fullerenes in the chain and between fullerenes and tube walls. The electronic characteristics of hybrid nanostructures are compared with those of "isolated" fullerenes and nanotubes, and (C20,C28) + BN-NT structures simulating fullerene adsorption on tube surface as the initial stage of (C20,C28)@BN-NT formation.  相似文献   

17.
We synthesized a new 56‐π‐electron fullerene derivative through a Diels–Alder cycloaddition of benzo[c]thiophene that featured a relatively low temperature, closer to stoichiometric use of the diene, and easy product purification. The 56‐π‐electron benzo[c]thiophene diadduct ( BTCDA ) has a LUMO energy level of 0.09 to 0.18 eV higher than that of 58‐π‐electron fullerenes, and therefore, the BTCDA ‐based organic photovoltaic device exhibited a higher open‐circuit voltage and power‐conversion efficiency (PCE). When used with a binary‐donor system, including visible‐light‐harvesting tetrabenzoporphyrin ( BP ) and near‐IR‐harvesting titanyl phthalocyanine ( TiOPc ), the device had a PCE that was 1.5–3 times higher (2.8 %) than that for devices with BP or TiOPc alone because the binary‐donor device can utilize light between λ=350 and 950 nm.  相似文献   

18.
Below −60° and without catalyst, 1,2‐dimethylidenecyclopentane ( 16 ), 1,2‐dimethylidenecyclohexane ( 13 ), 1,2‐dimethylidenecycloheptane ( 17 ), and 1,2‐dimethylidenecyclooctane ( 18 ) add to sulfur dioxide in the hetero‐Diels‐Alder mode, giving the corresponding sultines 4,5,6,7‐tetrahydro‐1H‐cyclopent[d][1,2]oxathiin 3‐oxide ( 19 ), 1,4,5,6,7,8‐hexahydro‐2,3‐benzoxathiin 3‐oxide ( 14 ), 4,5,6,7,8,9‐hexahydro‐1H‐cyclohept[d][1,2]oxathiin 3‐oxide ( 20 ), and 1,4,5,6,7,8,9,10‐octahydrocyclooct[d][1,2]oxathiin 3‐oxide ( 21 ), respectively. Above −40°, the sultines are isomerized into the corresponding sulfolenes 3,4,5,6‐tetrahydro‐1H‐cyclopenta[c]thiophene 2,2‐dioxide ( 22 ), 1,3,4,5,6,7‐hexahydrobenzo[c]thiophene 2,2‐dioxide ( 15 ), 3,4,5,6,7,8‐hexahydro‐1H‐cyclohepta[c]thiophene 2,2‐dioxide ( 23 ), and 1,3,4,5,6,7,8,9‐octahydrocycloocta[c]thiophene 2,2‐dioxide ( 24 ). Kinetics and thermodynamics data were collected for these reactions. The sultines are ca. 10 kcal/mol Diels‐Alder additions (ΔH( 16 −36±3 cal mol−1 K−1) in agreement with third‐order rate laws that imply that two molecules of SO2 intervene in the transition states of these cycloadditions. Similar observations were made for the cheletropic additions of SO2. Attempts to simulate the thermodynamics and kinetics parameters of the reactions of SO2 with dienes 16 and 13 by density‐functional theory (DFT) suggest that the calculations require an appropriate number of polarization functions in the basis set employed. A satisfactory recipe to compute the SO2 additions to large dienes can be: B3LYP/6‐31G(d) geometry optimizations followed by B3LYP/6‐31+G(2df,p) single‐point calculations or G2(MP2,SVP) estimates on the B3LYP/6‐31G(d) geometries.  相似文献   

19.
The accessibility of triads with deltahedral Zintl clusters in analogy to fullerene–linker–fullerene triads is another example for the close relationship between fullerenes and Zintl clusters. The compound {[K(2.2.2‐crypt)]4[RGe9‐CH?CH? CH?CH‐Ge9R]}(toluene)2 (R=(2Z,4E)‐7‐amino‐5‐aza‐hepta‐2,4‐dien‐2‐yl), containing two deltahedral [Ge9] clusters linked by a conjugated (1Z,3Z)‐buta‐1,3‐dien‐1,4‐diyl bridge, was synthesized through the reaction of 1,4‐bis(trimethylsilyl)butadiyne with K4Ge9 in ethylenediamine and crystallized after the addition of 2.2.2‐cryptand and toluene. The compound was characterized by single‐crystal structure analysis as well asNMR and IR spectroscopy.  相似文献   

20.
Co-aggregation of fullerene C60 and thiophene has been studied calorimetrically in cyclohexene at 25 °C. The total aggregation heat is found to depend on initial concentration of thiophene and fall between −1.9 and −5.8 kJ mol−1. The corresponding thiophene/fullerene molar ratio (“co-aggregation number”) ranges from 7 to 12. The data are rationalized by formation of heteromolecular nanoaggregates with intermolecular contacts of both fullerene–thiophene and fullerene–fullerene types. A physical model describing interaction between fullerenes and π-donors in solution is substantiated and used to explain heterogeneity of composites containing fullerenes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号