首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
轴流叶轮机械三维非定常粘性流动数值分析   总被引:5,自引:0,他引:5  
1前言叶轮机内部流动的数值计算方法一般都是基于转子与静子结构相互无关的定常流动假设,这种假设实际上是认为转子叶排与静子叶排相距足够远,以至于相互之间互不干扰。事实上,叶轮机中的非定常性是其固有的,转子叶排与静子叶排相距很近,转子叶排的高速旋转、上游叶...  相似文献   

2.
本文对谱方法用于周期性非定常流动的隐式求解方法进行了探讨,分析了影响计算稳定性和收敛速度的因素.提出了结合多重网格的隐式求解方法并对算法进行了验证,初步计算表明本文算法具有良好的稳定性和收敛速度.对于周期性非定常流动,结合本文提出的隐式求解的时域谱方法可以达到很高的精度且具有良好的计算效率.  相似文献   

3.
相位延迟法在双排涡轮三维非定常流动数值模拟中的应用   总被引:1,自引:0,他引:1  
非定常性是叶轮机械内流动的本质属性,本文采用相位延迟法,实现了双排叶片、各排叶片通道宽度不相等的叶轮机械非定常流动三维数值模拟,控制方程为Navier-Stokes方程,湍流模型采用Baldwin-Lomax模型。计算结果表明,该方法使用单通道来模拟叶片通道不相等的叶轮机械非定常流动,具有计算经济,模拟准确的特点。  相似文献   

4.
非定常粘性空化流动模型及其数值计算   总被引:6,自引:2,他引:6  
基于气液两相当地均相介质模型,本文给出了一种模拟非定常粘性空化流动的计算模型。认为空化绕流流场中流动介质是一种当地均匀的气液混相物。控制方程采用了应用两相流模型的N-S方程。基于液相和气相的状态方程推导了混合介质密度的表达式。为了保证数值计算的稳定性,控制方程的数值求解采用了TVD-MacCormack格式。为了评价计算模型的可靠性,分别计算了绕台阶和管道水锤的空化流动,所得结果是合理的,说明该方法可以用于空化流动的数值计算。  相似文献   

5.
低速轴流涡轮非定常数值模拟的非线性谐波法   总被引:4,自引:0,他引:4  
本文介绍了旋转机械非定常数值模拟的非线性谐波方法,并对某低速轴流涡轮的流场进行了数值模拟,获得了该涡轮通道内的非定常流场结构.在与实验结果及定常计算结果对比确认的基础上,分析了该涡轮动静叶间干涉与非定常流动特性,并比较了谐波阶数和工质的压缩性对计算结果的影响.研究结果表明,非线性谐波方法可有效地模拟动静非定常干涉.  相似文献   

6.
本文针对非设计工况下叶栅的分离流动进行研究。基于任意曲线坐标下的N-S方程,对不同攻角下单排叶栅的流动分离情况进行数值分析。计算结果表明,在零攻角和较小的负攻角情况下,流动基本呈现定常流动的特性。在正攻角情况下,特别是随着正攻角的加大,流动呈现明显的非定常流动特性,如大分离和涡的脱落现象等。  相似文献   

7.
非定常环境下叶栅性能的数值研究   总被引:4,自引:2,他引:4  
本文采用数值方法对叶轮机基元非定常流和排间匹配进行深入研究。结果表明流动非定常性产生额外损失,滞回现象存在于叶轮机中。而考虑基元非定常流动的叶型设计和排间缘线匹配技术将是未来叶轮机非定常气动设计的核心。  相似文献   

8.
9.
利用激光成像速度仪(PIV)测量了旋转离心叶轮内部的非定常流场,获得了旋转离心叶轮内部相对速度的非定常流场分布。详细分析了叶轮内部非定常流动现象和流动规律。通过实验研究发现旋转离心叶轮内部的流动是非定常,在叶轮出口处,叶片的吸力面与轮盖的夹角区存在一个低速区,并观察到了明显的射流/尾迹结构。射流区和尾流区的大小和范围在沿盘盖方向和跨叶片方向上是不同的。射流区和尾流区之间不存在明显的分界线。  相似文献   

10.
本文给出了一个模拟叶栅内准三维定常和非定常粘性流动的数值方法。对于定常流动,采用TVD Lax-Wendroff格式和代数湍流模型求解雷诺平均Navier-Stokes方程,使用当地时间步长和多网格技术使计算加速收敛到定常状态;对于非定常流动,使用双时间步长和全隐式离散,采用与求解定常流动相似的多网格方法求解隐式离散方程。文中给出了VKI透平叶栅内的定常流结果和1.5级透平叶栅内的非定常数值结果。  相似文献   

11.
轴流泵端壁区域流动三维粘性数值计算   总被引:9,自引:0,他引:9  
本文采用通用流场分析软件FLUENT,基于N-S方程,选用RNG κ—ε湍流模型与SIMPLEC算法,对轴流泵叶轮内部(及端壁间隙)流动进行了三维粘性数值计算。通过实验验证,表明数值计算结果和实测数据吻合较好。详细分析了叶顶附近流场形态以及叶轮出口轴向、周向速度分布,进行了性能预估。并给出了实验装置图。  相似文献   

12.
部分流泵整机非定常流动数值模拟   总被引:5,自引:1,他引:5  
本文在设计工况下采用滑移网格技术对部分流泵进行了整机非定常流动数值模拟,分别分析了叶轮、蜗壳内的非定常流动规律。计算表明,部分流泵内流的非定常特性极其强烈,只有采用非定常计算方法才能反映其内流的实质。本文的计算为进一步研究部分流泵的内流现象、提高效率、减少水利损失提供了一定的理论依据。  相似文献   

13.
叶型优化在非定常流动条件下效果的数值分析   总被引:4,自引:0,他引:4  
本文对叶型优化在非定常流动条件下的效果进行数值研究。叶型优化基于比较成熟的在定常流动条件下的反问题解法,非定常流动则考虑到动静叶栅之间的相互作用,非定常流动的求解在N-S方程的基础上采用分区计算的方法来完成。数值计算的结果表明,定常流动条件下优化得到的叶型在非定常流动条件下同样具有较好的气动性能。  相似文献   

14.
高精度高分辨率迎风格式应用于不同速度范围内粘性流动   总被引:3,自引:2,他引:3  
提出了一种适合于不同速度范围的高精度高分辨率的迎风有限差分格式,并基于此数植模型发展了适应于速度范围极宽的非定常粘性流动通用软件,不仅适用于超音速下捕捉强间断面,跨音速及高亚音速下捕捉弱间断面和滑移面,还可以精确地模拟低速情况下的粘性流动。此软件可分别用于研究内流和外流的流动特性以及预估其粘性损失。  相似文献   

15.
跨音速轴流压气机级三维粘性流场全工况数值模拟   总被引:4,自引:0,他引:4  
采用一种快速求解三维粘性流场的计算方法求解跨音速轴流压气机级内部流场及全工况特性。该方法以LU-SGS-GE隐式格式和MUSCL TVD迎风格式为基础,结合壁面函数方法和简单的混合长度湍流模型,对三维可压缩雷诺平均Navie-Stokes方程进行求解。叶列间参数的传递采用混合平面方法并应用了微机网络并行计算技术。计算得到了NASA 37号低展弦比、跨音速轴流压气机级70%设计转速下的全工况性能曲线,并重点分析了其中一些典型工况下的内部流场。计算与实验结果的对比表明此方法能快速得到三维粘性流场的流动特性且计算精度较高,可用来模拟跨音速轴流压气机级内的全工况三维粘性流动。  相似文献   

16.
叶轮机械动静叶片排非定常气动干涉的数值模拟   总被引:8,自引:4,他引:8  
本文采用一种分区算法求解二维Navier-Stokes方程,对叶轮机械多级叶片排内的非定常流场干涉进行数值模拟。在探讨分区计算对于复杂通道内流场和动静叶列非定常干涉作用数值计算的必要性和重要性之后,针对某蒸汽轮机跨音速叶片组进行了数值分析,得到了典型的动静叶间非定常干涉流动图谱、作用于叶片的非定常气动力及其频谱特征。计算结果表明。本文提出的计算方法是合理有效的,为今后进行大规模动静叶非定常气动计算和基于非定常数值模拟的工程设计提供了可靠的依据和有用的工具。  相似文献   

17.
非定常叶顶间隙泄漏流动和换热的数值研究   总被引:3,自引:0,他引:3  
通过数值方法研究了带叶顶间隙的某一级半透平中的非定常流动和换热问题.数值模拟采用标准k-ω两方程湍流模型,求解非定常雷诺平均N-S方程.动叶顶部间隙取为0.4 mm.分析了动静干涉对动叶顶部间隙内泄漏流动与换热的影响.结果表明,周期性通过的上游静叶尾迹和通道涡足动叶通道中非定常现象的主要来源.流场的波动主要存在于叶顶吸力面侧中间弦长附近.叶顶换热系数波动主要存在于两个位置,一是叶顶吸力面侧,一是叶顶主泄漏通道.叶顶表面面积平均传热系数非定常计算的时均结果与定常计算获得的结果偏差小于2%.  相似文献   

18.
处于部分进汽时动叶片排内非定常流动现象的数值研究   总被引:3,自引:1,他引:3  
本文在简要回顾了迄今为止对于工作在部分进汽状态下叶片特性的实验和理论研究结果之后,采用作者发展的多通道三维叶片非定常计算程序,对处于部分进汽时动叶片排内的三维流动进行了数值模拟,并对计算结果进行了分析。  相似文献   

19.
采用三维粘性流场求解软件Fine/TURBO[1]对低压蒸汽透平下游排汽缸内的复杂流动进行数值模拟。计算中使用了Jameson的Runge-Kutta中心差分格式[2]和Baldwin-Lomax的代数湍流模型、计算结果同部分实验结果进行了对比,表明数值模拟揭示了排汽缸内复杂的旋涡结构,以及影响排气缸内压力恢复和总压损失的主要因素。  相似文献   

20.
基于前期所提出的简化的压气机转子叶尖泄漏流动模型,研究泄漏流动中的主流/射流剪切机制和湍流机理。采用DNS方法研究了基于射流狭缝长度的Re=15000的泄漏模型流动。结果表明,低雷诺数下泄漏模型仍能产生类似真实泄漏流的旋涡结构和湍流特性。模型中的流动具有强非定常特性和大尺度旋涡结构,并对泄漏涡中的湍流结构具有重要影响,对该模型流动的研究能够加深对于泄漏流动的机理认识,发展更精确的湍流模型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号