共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A. M. Bagabir 《Shock Waves》2012,22(6):547-556
3.
4.
5.
The solution of the problem of propagation of a wave in soils is presented for the case when the wave is produced by the detonation of a spherical charge of some explosive material (EM). The solution is obtained on a computer by the method of characteristics. The soils are regarded as multicomponent media consisting of solid particles, water, and air in conformity with the model proposed in [1, 2]. The dependence of the pressure, velocity of the particles, and the density in the wave front on the distance is determined; the variation of these parameters with time at fixed points of the medium is also determined. The results are compared with the results of tests [1, 2]. Their close agreement for different contents of the components indicates the applicability of the multicomponent model to soils. The limits of applicability of the model are determined. The propagation of a plane wave under the same conditions was investigated in [3]. 相似文献
6.
7.
8.
9.
10.
11.
12.
为研究爆炸应力波与裂纹相互作用机理,利用透射式爆炸动态焦散线光学实验系统研究了预制水平静态裂纹和切缝药包炮孔爆破产生的水平运动裂纹受正入射爆炸动载作用后动态特性的变化规律。结果表明:正入射爆炸应力波与静止裂纹作用时,爆炸应力波P波使得裂纹先闭合后张开,S波在裂纹壁面形成波浪状散斑上下交替向外扩展;运动裂纹尖端应力场对静止裂纹的起裂和扩展有重要影响。后爆孔爆炸应力波对先爆孔产生的水平定向运动裂纹尖端动力学特性影响显著。当爆炸应力波与运动裂纹同向时,P波使得裂纹扩展速度和应力强度因子KI^d先减小后增大,S波促进了裂纹的扩展,波与裂纹作用之后,裂纹扩展速度增大;当爆炸应力波与运动裂纹反向时,P波抑制了运动裂纹的扩展,波与裂纹作用之后,裂纹扩展速度和应力强度因子KI^d均逐渐降低。 相似文献
13.
I. A. Luchko P. A. Parshukov A. G. Smirnov 《Journal of Applied Mechanics and Technical Physics》1974,15(4):507-510
Experimental results are given on the parameters of cylindrical blast waves in water-impregnated sandy loam as a function of the charge depth, the distance from the charge, and the free porosity of the soil.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, pp. 88–93, July–August, 1974. 相似文献
14.
A brief review of the literatures on the titled subject is given. A set of wave equations, taking the inertial coupling effect
between soil skeleton and pore water into account, are established for saturated soils. The preliminary analysis shows that
the nature of wave propagation is mainly influenced by permeability coefficient,k. There are three types of waves, two (P-and S-wave) propagating through soil skeleton and one(P-wave) through pore water.
For a soil with large value ofk, compression wave velocity through pore water will be greater than that through single-phased water, and ask→∞, the former could be
times as great as the latter. For a soil with extremely low permeability, the compression wave velocity could be either less
or greater than that through single-phased water, depending on the rigidity of the soil passing through. Some phenomena observed
from tests presented in the literature may be reasonably explained by the proposed theory herein, and thus more reliable parameters
of soil could be obtained from wave velocity measurements. Further studies on this subject are still needed.
This paper is a part of the dissertation of the first author for the Ph.D. degree, the second author is his advisor. 相似文献
15.
16.
An ultra-high speed, time-resolved particle image velocimetry (PIV) system is developed to measure velocity fields created by explosive detonators. When initiated into a gas, the detonators generate blast waves that propagate outwards from the origin of initiation at supersonic speeds. The PIV system consists of a custom eight-pulse Nd:YAG laser system and an ultra-high speed camera system comprising four dual-frame CCD cameras optically combined to share a single optic axis. The system is capable of sampling the flow field four times at up to 333 MHz or eight times at up to 8 MHz. System development is discussed, and preliminary application to the complex flow behind the blast wave from an exploding bridge wire detonator is demonstrated. 相似文献
17.
B. E. Gelfand A. M. Bartenev S. P. Medvedev A. N. Polenov S. V. Khomik M. Lenartz H. Grönig 《Shock Waves》1994,4(3):137-143
On the basis of numerical modeling specific features of shock wave reflections were analyzed. It was found, that after diaphragm rupture self-modeling pressure and velocity distributions nearby the shock front establish. But in some special cases the temperature behind the shock front can rise. This peculiarity should be taken into account when performing experiments with high reactive gaseous mixtures. The temperature on the shock front and the velocity gradient behind it are uniform in the case of strong blast wave reflections. This effect is observed in the zone with an elevated temperature profile behind the incident blast wave. The reflected triangular waves conserve a quasi-self-modeling character by pressure. Typical experiments were carried out to verify the theoretical predictions. The effects of reflected wave acceleration in the case of triangular waves and the self-similar character of the pressure profiles were observed.This article was processed using Springer-Verlag TEX Shock Waves macro package 1.0 and the AMS fonts, developed by the American Mathematical Society. 相似文献
18.
Assessment of the net load imparted to a building that is oriented at some angle to an incident blast wave is complicated by the difficulty of establishing the impulse delivered to each part of the building’s surfaces. Expansion waves originating from the edges and top of the building—where regions of different pressures meet—tend to reduce the (oblique) reflected impulses that would develop on an infinitely large surface. This process is referred to as oblique clearing. An investigation which considered a single, tall building aligned obliquely to an effectively uniform blast wave has been undertaken with the aim of demonstrating and describing the path of these expansion waves as the blast wave passes over the building. The investigation comprised a series of small-scale experiments supported by numerical simulations using the code ftt_air3d. The loads arising at two scaled stand-off distances were considered. It is shown that depending on the angle of the building to the blast and the length of the blast wave with respect to the size of the building, the effect of the expansion waves may vary considerably, hence altering the load experienced by the building. 相似文献
19.
The collision of two blast waves is analyzed for the case of variable parameters of the gas behind the wave front and wave reflection at a plane, a cylindrical, and a spherical obstacle. The reflection of a blast wave from a nonmoving obstacle is investigated in detail. The problem of the collision of two shock waves with constant parameters behind the front is solved both in the symmetrical case (reflection from a nonmoving wall) and in the case of waves of different amplitudes by a system of algebraic relations for the compression shocks. The reflection of a strong point-source spherical shock wave from a wall has been treated in [1, 2]. The present article examines the initial stage of wave collision for an arbitrary distribution of the parameters behind the front.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 41–48, September–October, 1971.The authors are grateful to V. P. Korobeinikov for a discussion of the results and to V. P. Kolgan for furnishing the numerical solutions. 相似文献
20.
Effects of viscosity and vibrational nonequilibrium on the profile of a weak, spherical N-wave in air are experimentally and numerically studied. Weak blast waves were generated, in a quiescent air dome, by spark discharges and exploding wires and observed by high frequency response microphones over 40 meters. Some similarity relationships were obtained from the blast wave experiments. For observed N-waves having less than 100 Pa peak overpressure, the peak overpressure p
f
and the duration of the positive phaset
d+
are found to vary with the radial distance from the sourcer as p
f
r
–1.38 andt
d
+ r
0.19, whilst the rise time of the blast wave t
f
linearly increases with distance. Similar trends were also found for the negative phase of the blast wave. Numerical simulations were carried out to compare with the blast wave data. The Navier-Stokes equations for spherical symmetric flows were solved by coupling with a relaxation equation for vibrational excitation of oxygen using the random choice method (RCM) adapted to supercomputing with an operator splitting technique. The resultant N-wave profiles are in good agreement with the experimental results. The numerical results clearly indicate that the wave-easing process due to the dispersive effect of vibrational relaxation plays a dominant role in determining the rise time of the N-wave.This article was processed using Springer-Verlag TEX Shock Waves macro package 1990. 相似文献