首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
It is pointed out that the coupling of macroscopic test masses to the gravi-dilaton background of string theory is non geodesic, in general, and cannot be parametrized by a Brans–Dicke model of scalar-tensor gravity. The response of gravitational antennas to dilatonic waves should be analyzed through a generalized equation of geodesic deviation, taking into account the possible direct coupling of the background to the (composition-dependent) dilatonic charge of the antenna.  相似文献   

2.
文德华  付宏洋  陈伟 《中国物理 B》2011,20(6):60402-060402
The imprints of the neutron star crust on the gravitational waves emitted from the axial w-modes are investigated by adopting two typical equations of state (EOSs) of the crust matter and two representative EOSs of the core matter. It is shown that there is a significant effect of the crust EOSs on the gravitational waves from the axial w-mode oscillation for a stiff core EOS.  相似文献   

3.
Gravitational collapse of cylindrical anisotropic fluid has been considered in analogy with the work of Misner and Sharp. Using Darmois matching conditions, the interior cylindrical dissipative fluid (in the form of shear viscosity and heat flux) is matched to an exterior vacuum Einstein–Rosen space–time. It is found that on the bounding 3-surface the radial pressure of the anisotropic perfect fluid is linearly related to the shear viscosity and the heat flux of the dissipative fluid on the boundary. This non-zero radial pressure on the bounding surface may be considered as the source of gravitational waves outside the collapsing matter distribution.  相似文献   

4.
In analogy with spontaneous magnetization of ferromagnets below the Curie temperature, a neutron star (NS), with a compactness above a certain critical value, may undergo spontaneous scalarization and exhibit an interior nontrivial scalar configuration. Consequently, the exterior spacetime is changed, and an external scalar field appears, which subsequently triggers a scalarization of its companion. The dynamical interplay produces a gravitational scalar counterpart of tensor gravitational waves. In this paper, we resort to scalar–tensor theory and demonstrate that the gravitational scalar counterpart from a double neutron star (DNS) and a neutron star–white dwarf (NS-WD) system become massive. We report that (1) a gravitational scalar background field, arising from convergence of external scalar fields, plays the role of gravitational scalar counterpart in scalarized DNS binary, and the appearance of a mass-dimensional constant in a Higgs-like gravitational scalar potential is responsible for a massive gravitational scalar counterpart with a mass of the order of the Planck scale; (2) a dipolar gravitational scalar radiated field, resulting from differing binding energies of NS and WD, plays the role of a gravitational scalar counterpart in scalarized orbital shrinking NS-WDs, which oscillates around a local and scalar-energy-density-dependent minimum of the gravitational scalar potential and obtains a mass of the order of about \(10^{-21}\,{\text {eV/c}}^2\).  相似文献   

5.
6.
Gravitational lenses could be used to detect gravitational waves, because a gravitational wave affects the travel-time of a light ray. In a gravitational lens, this effect produces time-delays between the different images. Thus the bending of light, which was the first experimental confirmation of Einstein's theory, can be used to search for gravitational waves, which are the most poorly confirmed aspect of that same theory. Applying this method to the gravitational lens 0957+561 gives new upper bounds on the amplitude of low-frequency gravitational waves in the universe, and new limits on the energy-density during an early inflationary phase.This Essay received the First Award from the Gravity Research Foundation, 1990-Ed.  相似文献   

7.
Detection of gravitational waves from the inspiral phase of binary neutron star coalescence will allow us to measure the effects of the tidal coupling in such systems. Tidal effects provide additional contributions to the phase evolution of the gravitational wave signal that break a degeneracy between the system's mass parameters and redshift and thereby allow the simultaneous measurement of both the effective distance and the redshift for individual sources. Using the population of O(10(3)-10(7)) detectable binary neutron star systems predicted for 3rd generation gravitational wave detectors, the luminosity distance-redshift relation can be probed independently of the cosmological distance ladder and independently of electromagnetic observations. We conclude that for a range of representative neutron star equations of state the redshift of such systems can be determined to an accuracy of 8%-40% for z<1 and 9%-65% for 1相似文献   

8.
This paper is a contribution to the theory of pure radiation in General Relativity. It gives a survey of the radiation fields which possess a twistfree and non-expanding null congruence, and characterizes their subclasses of different Petrov type by geometrical properties. The term “plane-fronted”, intuitive inMaxwell's theory, is generalized toEinstein's theory.  相似文献   

9.
It is shown that gravitational waves reflect from sufficiently dense stellar objects. The condition of reflection is found and the reflection index, which reaches a value of 25% for neutron stars, is estimated.  相似文献   

10.
A method is presented for evaluating post-Newtonian orbital corrections to the orbital-period decrease of a relativistic binary, by using previous results on the gravitational-radiation luminosity of a bounded source and the binary's relative motion. The method is based on an energy-balance equation, whose validity to post-Newtonian accuracy is not proved here, but, in view of recent theoretical results on the classical energy-balance equation, seems to be quite reasonable, and, in view of the available observational data, is practically correct. In the case of the binary pulsar PSR 1913 + 16 the proposed relative orbital correction amounts to 10–6 of the current observational uncertainty, thus greatly favoring the predictions of the classical quadrupole formula.  相似文献   

11.
12.
The LIGO/Virgo detections of binary black hole mergers marked a watershed moment in astronomy, ushering in the era of precision tests of Kerr dynamics. We review theoretical and experimental challenges that must be overcome to carry out black hole spectroscopy with present and future gravitational wave detectors. Among other topics, we discuss quasinormal mode excitation in binary mergers, astrophysical event rates, tests of black hole dynamics in modified theories of gravity, parameterized “post-Kerr” ringdown tests, exotic compact objects, and proposed data analysis methods to improve spectroscopic tests of Kerr dynamics by stacking multiple events.  相似文献   

13.
A definition is given of a plane gravitational wave in a curved background space-time manifold. For a particular background metric, a dispersion relation for the waves is derived analogous to that satisfied by plane electromagnetic waves in a dilute plasma.  相似文献   

14.
《Physics letters. A》1999,254(5):245-250
We examine the propagation of gravitational waves in the new field theory of gravitation recently proposed by Novello-De Lorenci-Luciane (NDL). This examination is done on a solvable case corresponding to a spherically symmetric static configuration. We show that in NDL theory the velocity of gravitational waves is lower than light velocity. We point out some consequences of this result and suggest a possible scenario for its verification.  相似文献   

15.
The energy and angular momentum flux carried by gravitational waves from a spinning rod are calculated exactly in the weak field limit of general relativity. It is shown that contrary to common belief, the energy and angular momentum flux are not proportional and the energy and angular momentum equations governing the evolution of the rod are not identical. The spinning rod does not remain rigid: Its length increases. Both the angular deceleration and the rate of change of length are dependent on the nature of the material of the rod, and these rates are small, as expected.  相似文献   

16.
International Journal of Theoretical Physics - An attempt is made to obtain a conformally invariant gravitational wave equation in an isotropic background universe by modifying the Einstein field...  相似文献   

17.
An experiment for the detection of gravitational waves is proposed which utilizes the Mössbauer effect. The theory behind this experiment is based on an alternate formulation of the special theory of relativity which is summarized here.  相似文献   

18.
The aim of these notes is to give an accessible and self‐contained introduction to the theory of gravitational waves as the theory of a relativistic symmetric tensor field in a Minkowski background spacetime. This is the approach of a particle physicist: the graviton is identified with a particular irreducible representation of the Poincaré group, corresponding to vanishing mass and spin two. It is shown how to construct an action functional giving the linear dynamics of gravitons, and how General Relativity can be obtained from it. The Hamiltonian formulation of the linear theory is examined in detail. We study the emission of gravitational waves and apply the results to the simplest case of a binary Newtonian system.  相似文献   

19.
徐东莲 《物理》2019,48(9):593-599
2017年8月17日,LIGO/Virgo首次探测到了双中子星并合事件的引力波信号,随后多波段的跟进观测获得了GW170817事件的多波段“全息”图像并确认源头在40 Mpc外的NGC4993星系,但颇为遗憾的是(尽管与理论预期符合)当时全球运行中的中微子探测器都没有探测到与GW170817相关联的中微子。普遍认为,热中微子在双星引力潮汐撕裂绕行阶段就会产生,在并合事件后的十几毫秒内达到峰值;若并合中心产物为伽马射线暴或者稳定的磁星,还会在并合的即刻至数天内产生超高能中微子。因此,中微子信号不仅可以辅助研究并合后的产物环境,还可以在天文尺度上研究中微子的基本性质和寻找粒子物理标准模型之外的新物理。即使只探测到一个热中微子事件,也可以获得热中微子的能谱标度信息和诊断并合后十几毫秒内星体本身和周围环境的物理参数。另外,因为引力波以光速传播,通过热中微子信号相对引力波信号的时延,可限制中微子的绝对质量。若探测到延迟的高能中微子信号,除了可以清楚地证明双中子星并合的中心产物是磁星,还可以研究并合产物附近的磁场环境和宇宙射线加速机制。  相似文献   

20.
This paper reviews recent applications of the Einstein-Rosen type space-times to some problems of modern cosmology. An extensive overview of inhomogeneous universes filled with gravitational waves, classical fields, and relativistic fluids is given. The dynamics of primordial inhomogeneities, such as gravitational and matter waves and shocks, their interactions, and the global evolution of the models considered, is presented in detail.This paper is dedicated to the 75th birthday of Professor Nathan Rosen, who pioneered the topics considered here and founded the school of relativists to which the authors belong.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号