首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
η5-Cp(COOMe)MoCl(CO)3 is grafted on the surface of mesoporous MCM-41 and MCM-48 materials through available silanol groups. The structural intactness of the supporting materials is confirmed by powder XRD and N2 adsorption analysis. The presence of the Mo complex on the surface is confirmed by FT-IR and elemental analysis. The catalysts are successfully applied for cyclooctene epoxidation.  相似文献   

2.
This paper describes the heterogenization of a tetramethylmonocyclopentadienyl titanium (IV) trichloride complex, [Ti(η5-C5HMe4)Cl3] onto mesoporous MCM-41. Its immobilization has been performed via a straightforward grafting process of the organometallic precursor in the pores of an MCM-41 host material and by reaction with previously organomodified MCM-41 material with a hydroxyl triazine based compound. Applying all-silica MCM-41 hosts, stable and heterogeneous liquid-phase epoxidation catalysts are obtained. Powder X-ray diffraction and nitrogen adsorption-desorption analysis indicated that the structural integrity of the support has been preserved during the titanium complex immobilization. These materials have been also extensively characterized using diffuse reflectance UV-vis, 13C and 28Si MAS NMR and FT-IR spectroscopy. With these techniques the strong adsorption of the intact catalytic complex within an all-silica MCM-41 host is demonstrated. These materials have been tested as catalyst for the epoxidation of aliphatic and aromatic alkenes with TBHP as oxidant exhibiting a significant selectivity toward the epoxide with negligible leaching of titanium species. The conversion values are moderated, being the olefin trend reactivity 1-octene > cyclohexene > styrene.  相似文献   

3.
This paper reports proton and methanol transport behavior of composite membranes prepared for use in the direct methanol fuel cell (DMFC). The composite membranes were prepared by embedding various proportions (10–30 wt.%) of inorganic proton conducting material (tungstophosphoric acid (TPA)/MCM-41) into sulfonated poly(ether ether ketone) (SPEEK) polymer matrix. The results indicate that the proton conductivity of the membranes increases with increasing loading of solid proton conducting material. The highest conductivity value of 2.75 mS/cm was obtained for the SPEEK composite membrane containing 30 wt.% solid proton conducting material (50 wt.% TPA in MCM-41). The methanol permeability and crossover flux were also found to increase with increasing loading of the solid proton conducting material. Lowest permeability value of 5.7 × 10−9 cm2 s−1 was obtained for composite membrane with 10 wt.% of the solid proton conducting material (40 wt.% TPA in MCM-41). However, all the composite membranes showed higher selectivity (ratio between the proton conductivity and the methanol permeability) compared to the pure SPEEK membrane. In addition, the membranes are thermally stable up to 160 °C. Thus, these membranes have potential to be considered for use in direct methanol fuel cell.  相似文献   

4.
The Mobil Composition of Matter No. 41 (MCM-41) containing Cu and Al with Si/Al ratios varying from 100 to 10 and 1 to 6 wt.% of Cu was synthesized under hydrothermal and impregnation conditions, respectively. The samples were characterized by nitrogen adsorption–desorption measurements, X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), UV–Vis diffuse reflectance spectroscopy (UV–Vis DRS), temperature-programmed reduction (TPR), temperature-programmed desorption (TPD), and 29Si and 27Al magic-angle spinning–nuclear magnetic resonance (MAS–NMR) spectra. X-ray diffraction patterns indicate that the modified materials retain the standard MCM-41 structure. TPR patterns show the two-step reduction of Cu species. TPD study shows that Cu-impregnated Al-MCM-41 samples are more acidic than Al-MCM-41. From the MAS–NMR it was confirmed that most of the Al atoms are present tetrahedrally within the framework and some are present octahedrally in extraframework position. Impregnation of Cu shifted Al to the extraframework position. The catalytic activity of the samples toward hydroxylation of phenol in aqueous medium was evaluated using H2O2 as the oxidant at 80 °C. The effects of reaction parameters such as temperature, catalyst amount, amount of H2O2, and solvent were also investigated. Sample containing 4 wt.% copper-loaded Al-MCM-41-100 showed high phenol conversion (78%) with 68% catechol and 32% hydroquinone selectivity.  相似文献   

5.
Hexagonally ordered mesoporous silica material MCM-41 (SBET?=?1090?m2/g, pore size?=?31.2 ?) was synthesized and modified by 3-aminopropyl ligands. The differences in an uptake and subsequent release of anti-inflammatory drug naproxen from unmodified and amino modified MCM-41 samples were studied. The prepared materials were characterized by high resolution transmission electron microscopy (HRTEM) and scanning electron microscopy (SEM), nitrogen adsorption/desorption, Fourier-Transform Infrared Spectroscopy (FT-IR), Small-angle X-ray scattering (SAXS), thermoanalytical methods (TG/DTA) and elemental analysis. The amount of the drug released was monitored with thin layer chromatography (TLC) with densitometric detection in defined time intervals. The amounts of the released naproxen from mesoporous silica MCM-41/napro and amine-modified silica sample A-MCM-41/napro were 95 and 90% of naproxen after 72?h. In this study we compare the differences of release profiles from mesoporous silica MCM-41 and mesoporous silica SBA-15.  相似文献   

6.
A synthetic method for the fabrication of silica-based mesoporous magnetic (Fe or iron oxide spinel) nanocomposites with enhanced adsorption and magnetic capabilities is presented. The successful in situ synthesis of magnetic nanoparticles is a consequence of the incorporation of a small amount of carbon into the pores of the silica, this step being essential for the generation of relatively large iron oxide magnetic nanocrystals (10 ± 3 nm) and for the formation of iron nanoparticles. These composites combine good magnetic properties (superparamagnetic behaviour in the case of SiO2–C–Fe3O4/γ–Fe2O3 samples) with a large and accessible porosity made up of wide mesopores (>9 nm). In the present work, we have demonstrated the usefulness of this kind of composite for the adsorption of a globular protein (hemoglobin). The results obtained show that a significant amount of hemoglobin can be immobilized within the pores of these materials (up to 180 mg g−1 for some of the samples). Moreover, we have proved that the composite loaded with hemoglobin can be easily manipulated by means of an external magnetic field.  相似文献   

7.
Differential scanning calorimetry and high temperature oxide melt solution calorimetry are used to study enthalpy of phase transition and enthalpies of formation of Cu2P2O7 and Cu3(P2O6OH)2. α-Cu2P2O7 is reversibly transformed to β-Cu2P2O7 at 338–363 K with an enthalpy of phase transition of 0.15 ± 0.03 kJ mol−1. Enthalpies of formation from oxides of α-Cu2P2O7 and Cu3(P2O6OH)2 are −279.0 ± 1.4 kJ mol−1 and −538.8 ± 2.7 kJ mol−1, and their standard enthalpies of formation (enthalpy of formation from elements) are −2096.1 ± 4.3 kJ mol−1 and −4302.7 ± 6.7 kJ mol−1, respectively. The presence of hydrogen in diphosphate groups changes the geometry of Cu(II) and decreases acid–base interaction between oxide components in Cu3(P2O6OH)2, thus decreasing its thermodynamic stability.  相似文献   

8.
Remarkable power density was obtained for anode-supported solid oxide fuel cells (SOFCs) based on La0.8Sr0.2Ga0.8Mg0.2O3−δ (LSGM) electrolyte films, fabricated following an original procedure that allowed avoiding undesired reactions between LSGM and electrode materials, especially Ni. Electrophoretic deposition (EPD) was used for the fabrication of 30 μm-thick electrolyte films. Anode supports were made of La0.4Ce0.6O2−x (LDC). The LSGM powder was deposited by EPD on an LDC green tape-cast membrane added with carbon powder, both as pore former and substrate conductivity booster. A subsequent co-firing step at 1490 °C produced dense electrolyte films on porous LDC skeletons. Then, a La0.8Sr0.2Fe0.8Co0.2O3−δ (LSFC) cathode was applied by slurry-coating and calcined at 1100 °C. Finally, the porous LDC layer was impregnated with molten Ni nitrate to obtain, after calcination at 900 °C, a composite NiO–LDC anode. Maximum power densities of 780, 450, 275, 175, and 100 mW/cm2 at 700, 650, 600, 550, and 500 °C, respectively, were obtained using H2 as fuel and air as oxidant, demonstrating the success of the processing strategy. As a comparison, electrolyte-supported SOFCs made of the same materials were tested, showing a maximum power density of 150 mW/cm2 at 700 °C, more than 5 times smaller than the anode-supported counterpart.  相似文献   

9.
The reaction of Ru3(CO)12 with 2(diphenylphosphino)ethyl-triethoxysilane (DPTS) in hydrocarbons, leads to the functionalized Ru3(CO)12−n [Ph2P(CH2)2Si(OEt3)] n (n = 1,2) complexes. The complex with two phosphine substituents was chemically anchored on mesoporous silicas, SBA-15 and MCM-41, in order to obtain two hybrid materials characterized by a different localization of the metal centre on the surface of the porous supports. A detailed investigation of the cluster, before and after chemical anchoring on the mesoporous silicas, was pursued. Particular attention was also devoted to the study of the morphological, structural and textural properties of the metal-functionalised silicas (Ru/SBA-15 and Ru/MCM-41) by infrared spectroscopy (FT-IR), scanning electron microscopy, X-ray diffraction and N2 physisorption analysis.  相似文献   

10.
New luminescent inorganic–organic hybrid materials incorporating the luminescent zinc(II) complex ZnL2 (λem = 457 nm and Φem = 4.4% reference values for ZnL2; HL = chelating ligand resulting from the reaction between salicylaldehyde and 3-aminopropyltriethoxysilane), covalently bonded to different types of mesoporous silica hosts (namely MCM-41, MCM-48 and SBA-15), were prepared via both the methods of grafting post-synthesis (GPS) and one-pot synthesis (OPS). The products obtained, which form the GPS [(GPS)(Zn/MCM-41), (GPS)(Zn/MCM-48), (GPS)(Zn/SBA-15)] and the OPS [(OPS)(Zn/MCM-41), (OPS)(Zn/MCM-48), (OPS)(Zn/SBA-15)] series, contain the ZnL2 guest covalently bonded to the silica framework through silicon–oxygen bonds formed when the silane group is placed at the periphery of the Zn(II) coordination sphere. GPS and OPS materials were characterized by powder X-ray diffraction, N2 adsorption/desorption, thermogravimetric analysis (TGA) and UV/vis spectroscopy. For the new mesoporous materials the emission quantum yield (EQY) was measured by means of an integrating sphere combined with a spectrofluorimeter. The ZnL2 loading (measured by the ZnL2/SiO2 ratio calculated from TGA data) for MCM-41 appears to be independent of the synthesis procedure, whereas, for both MCM-48 and SBA-15, the ZnL2/SiO2 ratio of the materials obtained via OPS is about four times higher than products obtained from GPS. The ZnL2 loaded GPS and OPS series show λem maxima at about 485 and 455 nm, respectively. Moreover, with reference to EQY (GPS)(Zn/SBA-15) and (OPS)(Zn/SBA-15), although featuring ZnL2/SiO2 ratios of 0.13 and 0.45, respectively, they showed similar EQY values: 2% and 5%. On the contrary, (GPS)(Zn/MCM-41) and (OPS)(Zn/MCM-41) which give similar ZnL2/SiO2 ratios (0.09 and 0.14) exhibit very different EQY, i.e. 2% and 22%, respectively.  相似文献   

11.
The condensation reaction of 1,2-diketones and o-phenylenediamines was investigated in the presence of nano-sized mesoporous silica (MCM-41) supported 12-tungstophosphoric acid (TPA) as solid acid catalyst. Nano-sized MCM-41 was synthesized and the catalysts with different loading amounts of TPA (5–15 wt.%) were prepared and characterized by XRD, FT-IR and SEM techniques. The results confirm good dispersion of TPA on the solid support. The catalyst is reusable many times without loss in its activity.  相似文献   

12.
《Solid State Sciences》2012,14(2):250-257
CO2 adsorption properties on Mg modified silica mesoporous materials were investigated. By using the methods of co-condensation, dispersion and ion-exchange, Mg2+ was introduced into SBA-15 and MCM-41, and transformed into MgO in the calcination process. The basic MgO can provide active sites to enhance the acidic CO2 adsorption capacity. To improve the amount and the dispersion state of the loading MgO, the optimized modification conditions were also investigated. The XRD and TEM characteristic results, as well as the CO2 adsorption performance showed that the CO2 adsorption capacity not only depended on the pore structures of MCM-41 and SBA-15, but also on the improvement of the dispersion state of MgO by modification. Among various Mg modified silica mesoporous materials, the CO2 adsorption capacity increased from 0.42 mmol g−1 of pure silica SBA-15 to 1.35 mmol g−1 of Mg–Al–SBA-15-I1 by the ion-exchange method enhanced with Al3+ synergism. Moreover, it also increased from 0.67 mmol g−1 of pure silica MCM-41 to 1.32 mmol g−1 of Mg–EDA–MCM-41-D10 by the dispersion method enhanced with the incorporation of ethane diamine. The stability test by 10 CO2 adsorption/desorption cycles showed Mg–urea–MCM-41-D10 possessed quite good recyclability.  相似文献   

13.
In this work, batch adsorption experiments are carried out for crystal violet dye using mesoporous MCM-41 synthesized at room temperature and sulfate modified MCM-41 prepared by impregnation method using H2SO4 as sulfatising agent. The surface characteristics, pore structure, bonding behavior and thermal degradation of both the MCM-41 samples are characterized by nitrogen adsorption/desorption isotherms, X-ray diffraction (XRD) patterns, Fourier transform infrared (FT-IR) spectroscopy and thermo gravimetric analysis (TGA). The adsorption isotherm, kinetics and thermodynamic parameters are investigated for crystal violet (CV) dye using the calcined and sulfated MCM-41. Results are analysed using Langmuir, Freundlich and Redlich-Peterson isotherm models. It is found that the Freundlich model is an appropriate model to explain the adsorption isotherm. The highest adsorption capacity achieved is found to be 3.4×10−4 mol g−1 for the sulfated MCM-41. The percentage removal of crystal violet dye increases with increase in the pH for both the MCM-41 adsorbents. Kinetics of adsorption is found to follow the second-order rate equation. From the thermodynamic investigation, it is evident that the adsorption is exothermic in nature.  相似文献   

14.
The kinetic parameters, namely the triplet activation energy EA, model function f(α) or g(α) and pre-exponential factor A of the oxidation of Constantan tapes in 1 atm of oxygen have been determined from both isothermal and non-isothermal thermogravimetry. For isothermal experiments, with temperatures ranging from 650 °C to 900 °C, the results from direct conversion of the weight increase as a function of the time and curve fitting, are compared with the isoconversion method. For the non-isothermal experiments, with heating rates from 1 °C/min to 20 °C/min, comparison is made between the Friedman differential method and the integral methods of Kissinger, Ozawa and Li and Tang. All methods give apparent activation energies with relative standard deviations as low as 3%. The results converge to the identification of three stages in the oxidation behaviour. A parabolic law for reaction extents α below 15% with EA = 246 ± 7 kJ mol−1, ln A = 14.3, is followed by two linear stages with EA = 244 ± 4 kJ mol−1 and ln A = 15.3 for 0.18 < α < 0.35 and EA = 228 ± 15 kJ mol−1, ln A ≈ 13 for α > 45%, respectively.  相似文献   

15.
Fe2O3/SiO2 nanocomposites based on fumed silica A-300 (SBET = 337 m2/g) with iron oxide deposits at different content were synthesized using Fe(III) acetylacetonate (Fe(acac)3) dissolved in isopropyl alcohol or carbon tetrachloride for impregnation of the nanosilica powder at different amounts of Fe(acac)3 then oxidized in air at 400–900 °C. Samples with Fe(acac)3 adsorbed onto nanosilica and samples with Fe2O3/SiO2 including 6–17 wt% of Fe2O3 were investigated using XRD, XPS, TG/DTA, TPD MS, FTIR, AFM, nitrogen adsorption, Mössbauer spectroscopy, and quantum chemistry methods. The structural characteristics and phase composition of Fe2O3 deposits depend on reaction conditions, solvent type, content of grafted iron oxide, and post-reaction treatments. The iron oxide deposits on A-300 (impregnated by the Fe(acac)3 solution in isopropanol) treated at 500–600 °C include several phases characterized by different nanoparticle size distributions; however, in the case of impregnation of A-300 by the Fe(acac)3 solution in carbon tetrachloride only α-Fe2O3 phase is formed in addition to amorphous Fe2O3. The Fe2O3/SiO2 materials remain loose (similar to the A-300 matrix) at the bulk density of 0.12–0.15 g/cm3 and SBET = 265–310 m2/g.  相似文献   

16.
The spherical mesoporous MCM-41 coated with a novel Ca2MoO5:Eu3+ phosphor layer was prepared for the first time. The obtained Ca2MoO5:Eu3+-MCM-41 was characterized via XRD and FT-IR. The crystal system of the Ca2MoO5 phase was determined to be orthorhombic, and its space group was found to be Ima2 (46), and its cell parameters were a = 16.175, b = 5.1514, c = 5.6977 A°; α = β = γ = 90°. The particle dimensions of MCM-41 and Ca2MoO5:Eu3+-MCM-41 nanoparticles were determined to be 260 nm and 229 nm via scanning electron microscopy analysis. Bortezomib was loaded into the Ca2MoO5:Eu3+-MCM-41 nanoparticles under scCO2 at 200 bars and 40 °C. The results of the TG analysis showed that the amount of drug-loaded to MCM-41 and Ca2MoO5:Eu3+-MCM-41 nanoparticles were determined to be 14.02% and 3.02%, respectively. The BET analysis showed that while the specific surface area and pore volume of MCM-41 and Ca2MoO5:Eu3+ before Bortezomib (BTZ) loading were 1,506 m2/g and 267 m2/g, respectively, after drug loading these values were found to decrease to 488 m2/g and 7.883 m2/g. It was determined that BTZ was released from the nanoparticles in a sustained manner over 66 h. The R2 value, which was calculated to be 0.9739, indicated that the release kinetic of BTZ followed the Korsmeyer–Peppas model.  相似文献   

17.
Three rare earth compounds, KEu[AsS4] (1), K3Dy[AsS4]2 (2), and Rb4Nd0.67[AsS4]2 (3) have been synthesized employing the molten flux method. The reactions of A2S3 (A = K, Rb), Ln (Ln = Eu, Dy, Nd), As2S3, S were accomplished at 600 °C for 96 h in evacuated fused silica ampoules. Crystal data for these compounds are: 1, monoclinic, space group P21/m (no. 11), a = 6.7276(7) Å, b = 6.7190(5) Å, c = 8.6947(9) Å, β = 107.287(12)°, Z = 2; 2, monoclinic, space group C2/c (no. 15), a = 10.3381(7) Å, b = 18.7439(12) Å, c = 8.8185(6) Å, β = 117.060(7)°, Z = 4; 3, orthorhombic, space group Ibam (no. 72), a = 18.7333(15) Å, b = 9.1461(5) Å, c = 10.2060(6) Å, Z = 4. 1 is a two-dimensional structure with 2[Eu(AsS4)] layers separated by potassium cations. Within each layer, distorted bicapped trigonal [EuS8] prisms are linked through distorted [AsS4]3− tetrahedra. Each Eu2+ cation is coordinated by two [AsS4]3− units by edge-sharing and bonded to further two [AsS4]3− units by corner-sharing. Compound 2 contains a one-dimensional structure with 1[Dy(AsS4)2]3− chains separated by potassium cations. Within each chain, distorted bicapped trigonal prisms of [DyS8] are linked by slightly distorted [AsS4]3− tetrahedra. Each Dy3+ ion is surrounded by four [AsS4]3− moieties in an edge-sharing fashion. For compound 3 also a one-dimensional structure with 1[Nd0.67(AsS4)2]4− chains is observed. But the Nd position is only partially occupied and overall every third Nd atom is missing along the chain. This cuts the infinite chains into short dimers containing two bridging [As4]3− units and four terminal [AsS4]3− groups. 1 is characterized with UV/vis diffuse reflectance spectroscopy, IR, and Raman spectra.  相似文献   

18.
The phase relations in the Fe-rich part of the pseudo-binary system SrO–Fe2O3 (>33 mol% Fe2O3) were reinvestigated between 800 and 1500 °C in air. A combination of microscopy, electron probe micro-analysis, powder X-ray diffraction and thermal analysis was used to determine phase relations, crystal structure parameters and phase transition temperatures. M-type hexagonal ferrite SrFe12O19 (85.71 mol% Fe2O3) is stable up to 1410 °C. No indication of a significant phase width was found; Sr4Fe6O13±δ appears as a second phase in compositions with <85.71±0.2 mol% Fe2O3. Sr4Fe6O13±δ itself is stable between 800 and 1250 °C. Two other hexagonal ferrites were found to exist at high temperatures only: W-type SrFe2+2Fe3+16O27 is stable between 1350 and 1440 °C and X-type ferrite Sr2Fe2+2Fe3+28O46 between 1350 and 1420 °C, respectively, which is shown here for the first time. These findings in combination with previously published data were used to derive a corrected phase diagram of the Fe-rich part of the pseudo-binary system SrO–Fe2O3.  相似文献   

19.
借助水热法,以正硅酸乙酯为硅源,十六烷基三甲基溴化铵为模板剂,在碱性条件下制备了纳米MCM-41分子筛。通过固相热扩散法将La2O3组装到MCM-41介孔孔道中,制备出含La2O3不同浓度的(MCM-41)-La2O3主-客体纳米复合材料。采用化学分析、粉末XRD、FTIR、77K低温N2吸附-解吸附、固体扩散漫反射吸收光谱、拉曼光谱、扫描电镜和发光光谱对主-客体复合材料进行表征。粉末XRD结果表明,La2O3组装到MCM-41分子筛的孔道后并未破坏分子筛骨架,在所制备的(MCM-41)-La2O3主-客体纳米复合材料中MCM-41骨架结构仍然具有较高的有序性,并且,随着植入客体材料浓度的增加复合材料的有序度有所降低。红外光谱表明所制备的纳米复合材料主体分子筛骨架完好;低温氮气吸附-解吸附技术表明La2O3已经部分地占据了MCM-41分子筛孔道,导致分子筛的比表面积和孔体积都有所降低;固体扩散漫反射吸收光谱表明吸收光谱的吸收峰发生了蓝移现象,并表现出量子限域效应,说明La2O3已经组装到了MCM-41分子筛的孔道中;拉曼光谱表明所制备的复合材料没有出现新的特征峰,表明La2O3已经组装到了MCM-41分子筛的孔道中;扫描电镜表明(MCM-41)-La2O3样品的外观非常规整,主要呈现的是球状结构,La2O3含量为10%时,(MCM-41)-La2O3的平均粒径为(114±10)nm。发光光谱研究结果表明,所制备的复合材料(MCM-41)-La2O3样品在396nm处具有较好的发光性质,因而具有作为发光材料潜在应用前景。  相似文献   

20.
The complex [(−)-menthylCp]Mo(CO)3Cl (1) was synthesized by the reaction of Mo(CO)3(EtCN)3 with [(−)-menthylCpH] to produce the hydride [(−)-menthylCp]Mo(CO)3H. The latter compound was then reacted with CCl4 to form [(−)-menthylCp]Mo(CO)3Cl (1). Compound 1 was tested as catalyst for the epoxidation of cis-cyclooctene, styrene and trans-β-methylstyrene in the presence of tert-butyl hydroperoxide (TBHP) at 55 °C using chloroform as solvent. Results under homogeneous conditions prompted the authors to immobilize complex 1 on mesoporous MCM-41 and MCM-48 surfaces leading to the grafted materials AM-41CpMoChi and AM-48CpMoChi. The presence of the organometallic complexes in the materials was confirmed by powder X-ray diffraction, N2 adsorption/desorption isotherms, TEM, EA, FT-IR, 1H MAS NMR and TG-MS. AM-41CpMoChi and AM-48CpMoChi were also tested as epoxidation catalysts. The catalytic examinations also included leaching experiments, and the reusing of the grafted materials for several runs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号