首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For a sequence $\underline{u}=(u_n)_{n\in \mathbb{N }}$ of integers, let $t_{\underline{u}}(\mathbb{T })$ be the group of all topologically $\underline{u}$ -torsion elements of the circle group $\mathbb{T }:=\mathbb{R }/\mathbb{Z }$ . We show that for any $s\in ]0,1[$ and $m\in \{0,+\infty \}$ there exists $\underline{u}$ such that $t_{\underline{u}}(\mathbb{T })$ has Hausdorff dimension $s$ and $s$ -dimensional Hausdorff measure equal to $m$ (no other values for $m$ are possible). More generally, for dimension functions $f,g$ with $f(t)\prec g(t), f(t)\prec \!\!\!\prec t$ and $g(t)\prec \!\!\!\prec t$ we find $\underline{u}$ such that $t_{\underline{u}}(\mathbb{T })$ has at the same time infinite $f$ -measure and null $g$ -measure.  相似文献   

2.
For a holomorphic proper map F from the ball $\mathbb{B}^{n+1}$ into $\mathbb{B}^{N+1}$ that is C 3 smooth up to the boundary, the image $M=F(\partial\mathbb{B}^{n})$ is an immersed CR submanifold in the sphere $\partial \mathbb{B}^{N+1}$ on which some second fundamental forms II M and $\mathit{II}^{CR}_{M}$ can be defined. It is shown that when 4??n+1<N+1??4n?3, F is linear fractional if and only if $\mathit{II}_{M} - \mathit{II}_{M}^{CR} \equiv 0$ .  相似文献   

3.
In 2005, Ginzburg, Rallis and Soudry constructed, in terms of residues of certain Eisenstein series, and by use of the descent method, families of nontempered automorphic representations of $Sp_{4nm} (\mathbb{A})$ and $\widetilde{Sp}_{2n(2m - 1)} (\mathbb{A})$ , which generalized the classical work of Piatetski-Shapiro on Saito-Kurokawa liftings. In this paper, we introduce a new framework (Diagrams of Constructions) in order to establish explicit relations among the representations introduced in [GRS05]. In particular, we prove that these constructions yield bijections between a certain set of cuspidal automorphic forms on $\widetilde{Sp}_{2n} (\mathbb{A})$ and a certain set of square-integrable automorphic forms of $Sp_{4n} (\mathbb{A})$ . The proofs use new interpretations of composition of two consecutive descents with explicit identities, which we expect to be very useful to further investigation of the automorphic discrete spectrum of classical groups.  相似文献   

4.
Applying the boundedness on weighted Lebesgue spaces of the maximal singular integral operator S * related to the Carleson?CHunt theorem on almost everywhere convergence, we study the boundedness and compactness of pseudodifferential operators a(x, D) with non-regular symbols in ${L^\infty(\mathbb{R}, V(\mathbb{R})), PC(\overline{\mathbb{R}}, V(\mathbb{R}))}$ and ${\Lambda_\gamma(\mathbb{R}, V_d(\mathbb{R}))}$ on the weighted Lebesgue spaces ${L^p(\mathbb{R},w)}$ , with 1?< p <? ?? and ${w\in A_p(\mathbb{R})}$ . The Banach algebras ${L^\infty(\mathbb{R}, V(\mathbb{R}))}$ and ${PC(\overline{\mathbb{R}}, V(\mathbb{R}))}$ consist, respectively, of all bounded measurable or piecewise continuous ${V(\mathbb{R})}$ -valued functions on ${\mathbb{R}}$ where ${V(\mathbb{R})}$ is the Banach algebra of all functions on ${\mathbb{R}}$ of bounded total variation, and the Banach algebra ${\Lambda_\gamma(\mathbb{R}, V_d(\mathbb{R}))}$ consists of all Lipschitz ${V_d(\mathbb{R})}$ -valued functions of exponent ${\gamma \in (0,1]}$ on ${\mathbb{R}}$ where ${V_d(\mathbb{R})}$ is the Banach algebra of all functions on ${\mathbb{R}}$ of bounded variation on dyadic shells. Finally, for the Banach algebra ${\mathfrak{A}_{p,w}}$ generated by all pseudodifferential operators a(x, D) with symbols ${a(x, \lambda) \in PC(\overline{\mathbb{R}}, V(\mathbb{R}))}$ on the space ${L^p(\mathbb{R}, w)}$ , we construct a non-commutative Fredholm symbol calculus and give a Fredholm criterion for the operators ${A \in \mathfrak{A}_{p,w}}$ .  相似文献   

5.
6.
Consider a finite dimensional complex Hilbert space ${\mathcal{H}}$ , with ${dim(\mathcal{H}) \geq 3}$ , define ${\mathbb{S}(\mathcal{H}):= \{x\in \mathcal{H} \:|\: \|x\|=1\}}$ , and let ${\nu_\mathcal{H}}$ be the unique regular Borel positive measure invariant under the action of the unitary operators in ${\mathcal{H}}$ , with ${\nu_\mathcal{H}(\mathbb{S}(\mathcal{H}))=1}$ . We prove that if a complex frame function ${f : \mathbb{S}(\mathcal{H})\to \mathbb{C}}$ satisfies ${f \in \mathbb{L}^2(\mathbb{S}(\mathcal{H}), \nu_\mathcal{H})}$ , then it verifies Gleason’s statement: there is a unique linear operator ${A: \mathcal{H} \to \mathcal{H}}$ such that ${f(u) = \langle u| A u\rangle}$ for every ${u \in \mathbb{S}(\mathcal{H}).\,A}$ is Hermitean when f is real. No boundedness requirement is thus assumed on f a priori.  相似文献   

7.
Let ${\Omega \subset \mathbb{R}^{N}}$ be a Lipschitz domain and Γ be a relatively open and non-empty subset of its boundary ${\partial\Omega}$ . We show that the solution to the linear first-order system $$\nabla \zeta = G\zeta, \, \, \zeta|_\Gamma = 0 \quad \quad \quad (1)$$ is unique if ${G \in \textsf{L}^{1}(\Omega; \mathbb{R}^{(N \times N) \times N})}$ and ${\zeta \in \textsf{W}^{1,1}(\Omega; \mathbb{R}^{N})}$ . As a consequence, we prove $$||| \cdot ||| : \textsf{C}_{o}^{\infty}(\Omega, \Gamma; \mathbb{R}^{3}) \rightarrow [0, \infty), \, \, u \mapsto \parallel {\rm sym}(\nabla uP^{-1})\parallel_{\textsf{L}^{2}(\Omega)}$$ to be a norm for ${P \in \textsf{L}^{\infty}(\Omega; \mathbb{R}^{3 \times 3})}$ with Curl ${P \in \textsf{L}^{p}(\Omega; \mathbb{R}^{3 \times 3})}$ , Curl ${P^{-1} \in \textsf{L}^{q}(\Omega; \mathbb{R}^{3 \times 3})}$ for some p, q > 1 with 1/p + 1/q = 1 as well as det ${P \geq c^+ > 0}$ . We also give a new and different proof for the so-called ‘infinitesimal rigid displacement lemma’ in curvilinear coordinates: Let ${\Phi \in \textsf{H}^{1}(\Omega; \mathbb{R}^{3})}$ satisfy sym ${(\nabla\Phi^\top\nabla\Psi) = 0}$ for some ${\Psi \in \textsf{W}^{1,\infty}(\Omega; \mathbb{R}^{3}) \cap \textsf{H}^{2}(\Omega; \mathbb{R}^{3})}$ with det ${\nabla\Psi \geq c^+ > 0}$ . Then, there exist a constant translation vector ${a \in \mathbb{R}^{3}}$ and a constant skew-symmetric matrix ${A \in \mathfrak{so}(3)}$ , such that ${\Phi = A\Psi + a}$ .  相似文献   

8.
In this paper we describe the actions of the operator $S_\mathbb{D }$ or its adjoint $S_\mathbb{D }^*$ on the poly-Bergman spaces of the unit disk $\mathbb{D }.$ Let $k$ and $j$ be positive integers. We prove that $(S_\mathbb{D })^{j}$ is an isometric isomorphism between the true poly-Bergman subspace $\mathcal{A }_{(k)}^2(\mathbb{D })\ominus N_{(k),j}$ onto the true poly-Bergman space $\mathcal{A }_{(j+k)}^2(\mathbb{D }),$ where the linear space $N_{(k),j}$ have finite dimension $j.$ The action of $(S_\mathbb{D })^{j-1}$ on the canonical Hilbert base for the Bergman subspace $\mathcal{A }^2(\mathbb{D })\ominus \mathcal{P }_{j-1},$ gives a Hilbert base $\{ \phi _{ j , k } \}_{ k }$ for $\mathcal{A }_{(j)}^2(\mathbb{D }).$ It is shown that $\{ \phi _{ j , k } \}_{ j, k }$ is a Hilbert base for $L^2(\mathbb{D },d A)$ such that whenever $j$ and $k$ remain constant we obtain a Hilbert base for the true poly-Bergman space $\mathcal{A }_{(j)}^2(\mathbb{D })$ and $\mathcal{A }_{(-k)}^2(\mathbb{D }),$ respectively. The functions $\phi _{ j , k }$ are polynomials in $z$ and $\overline{z}$ and are explicitly given in terms of the $(2,1)$ -hypergeometric polynomials. We prove explicit representations for the true poly-Bergman kernels and the Koshelev representation for the poly-Bergman kernels of $\mathbb{D }.$ The action of $S_\Pi $ on the true poly-Bergman spaces of the upper half-plane $\Pi $ allows one to introduce Hilbert bases for the true poly-Bergman spaces, and to give explicit representations of the true poly-Bergman and poly-Bergman kernels.  相似文献   

9.
We show a $2$ -nilpotent section conjecture over $\mathbb{R }$ : for a geometrically connected curve $X$ over $\mathbb{R }$ such that each irreducible component of its normalization has $\mathbb{R }$ -points, $\pi _0(X(\mathbb{R }))$ is determined by the maximal $2$ -nilpotent quotient of the fundamental group with its Galois action, as the kernel of an obstruction of Jordan Ellenberg. This implies that for $X$ smooth and proper, $X(\mathbb{R })^{\pm }$ is determined by the maximal $2$ -nilpotent quotient of $\mathrm{Gal }(\mathbb{C }(X))$ with its $\mathrm{Gal }(\mathbb{R })$ action, where $X(\mathbb{R })^{\pm }$ denotes the set of real points equipped with a real tangent direction, showing a $2$ -nilpotent birational real section conjecture.  相似文献   

10.
This work starts with the introduction of a family of differential energy operators. Energy operators $({\varPsi}_{R}^{+}, {\varPsi}_{R}^{-})$ were defined together with a method to decompose the wave equation in a previous work. Here the energy operators are defined following the order of their derivatives $(\varPsi^{-}_{k}, \varPsi^{+}_{k}, k=\{0,\pm 1,\pm 2,\ldots\})$ . The main part of the work demonstrates for any smooth real-valued function f in the Schwartz space $(\mathbf{S}^{-}(\mathbb{R}))$ , the successive derivatives of the n-th power of f ( $n \in \mathbb{Z}$ and n≠0) can be decomposed using only $\varPsi^{+}_{k}$ (Lemma); or if f in a subset of $\mathbf{S}^{-}(\mathbb{R})$ , called $\mathbf{s}^{-}(\mathbb{R})$ , $\varPsi^{+}_{k}$ and $\varPsi^{-}_{k}$ ( $k\in \mathbb{Z}$ ) decompose in a unique way the successive derivatives of the n-th power of f (Theorem). Some properties of the Kernel and the Image of the energy operators are given along with the development. Finally, the paper ends with the application to the energy function.  相似文献   

11.
In this paper, we study noncommutative domains ${\mathbb{D}_f^\varphi(\mathcal{H}) \subset B(\mathcal{H})^n}$ generated by positive regular free holomorphic functions f and certain classes of n-tuples ${\varphi = (\varphi_1, \ldots, \varphi_n)}$ of formal power series in noncommutative indeterminates Z 1, . . . , Z n . Noncommutative Poisson transforms are employed to show that each abstract domain ${\mathbb{D}_f^\varphi}$ has a universal model consisting of multiplication operators (M Z1, . . . , M Z n ) acting on a Hilbert space of formal power series. We provide a Beurling type characterization of all joint invariant subspaces under M Z1, . . . , M Z n and show that all pure n-tuples of operators in ${\mathbb{D}_f^\varphi(\mathcal{H})}$ are compressions of ${M_{Z_1} \otimes I, \ldots, M_{Z_n} \otimes I}$ to their coinvariant subspaces. We show that the eigenvectors of ${M_{Z_1}^*, \ldots, M_{Z_n}^*}$ are precisely the noncommutative Poisson kernels ${\Gamma_\lambda}$ associated with the elements ${\lambda}$ of the scalar domain ${\mathbb{D}_{f,<}^\varphi(\mathbb{C}) \subset \mathbb{C}^n}$ . These are used to solve the Nevanlinna-Pick interpolation problem for the noncommutative Hardy algebra ${H^\infty(\mathbb{D}_f^\varphi)}$ . We introduce the characteristic function of an n-tuple ${T=(T_1, \ldots , T_n) \in \mathbb{D}_f^\varphi(\mathcal{H})}$ , present a model for pure n-tuples of operators in the noncommutative domain ${\mathbb{D}_f^\varphi(\mathcal{H})}$ in terms of characteristic functions, and show that the characteristic function is a complete unitary invariant for pure n-tuples of operators in ${\mathbb{D}_f^\varphi(\mathcal{H})}$ .  相似文献   

12.
Let ${{\mathbb H}_n, n \geq 1}$ , be the near 2n-gon defined on the 1-factors of the complete graph on 2n?+?2 vertices, and let e denote the absolutely universal embedding of ${{\mathbb H}_n}$ into PG(W), where W is a ${\frac{1}{n+2} \left(\begin{array}{c}2n+2 \\ n+1\end{array}\right)}$ -dimensional vector space over the field ${{\mathbb F}_2}$ with two elements. For every point z of ${{\mathbb H}_n}$ and every ${i \in {\mathbb N}}$ , let Δ i (z) denote the set of points of ${{\mathbb H}_n}$ at distance i from z. We show that for every pair {x, y} of mutually opposite points of ${{\mathbb H}_n, W}$ can be written as a direct sum ${W_0 \oplus W_1 \oplus \cdots \oplus W_n}$ such that the following four properties hold for every ${i \in \{0,\ldots,n \}}$ : (1) ${\langle e(\Delta_i(x) \cap \Delta_{n-i}(y)) \rangle = {\rm PG}(W_i)}$ ; (2) ${\left\langle e \left( \bigcup_{j \leq i} \Delta_j(x) \right) \right\rangle = {\rm PG}(W_0 \oplus W_1 \oplus \cdots \oplus W_i)}$ ; (3) ${\left\langle e \left( \bigcup_{j \leq i} \Delta_j(y) \right) \right\rangle = {\rm PG}(W_{n-i}\oplus W_{n-i+1} \oplus \cdots \oplus W_n)}$ ; (4) ${\dim(W_i) = |\Delta_i(x) \cap \Delta_{n-i}(y)| = \left(\begin{array}{c}n \\ i\end{array}\right)^2 - \left(\begin{array}{c}n \\ i-1\end{array}\right) \cdot \left(\begin{array}{c}n \\ i+1\end{array}\right)}$ .  相似文献   

13.
We consider the (pure) braid groups $B_{n}(M)$ and $P_{n}(M)$ , where $M$ is the $2$ -sphere $\mathbb S ^{2}$ or the real projective plane $\mathbb R P^2$ . We determine the minimal cardinality of (normal) generating sets $X$ of these groups, first when there is no restriction on $X$ , and secondly when $X$ consists of elements of finite order. This improves on results of Berrick and Matthey in the case of $\mathbb S ^{2}$ , and extends them in the case of $\mathbb R P^2$ . We begin by recalling the situation for the Artin braid groups ( $M=\mathbb{D }^{2}$ ). As applications of our results, we answer the corresponding questions for the associated mapping class groups, and we show that for $M=\mathbb S ^{2}$ or $\mathbb R P^2$ , the induced action of $B_n(M)$ on $H_3(\widetilde{F_n(M)};\mathbb{Z })$ is trivial, $F_{n}(M)$ being the $n^\mathrm{th}$ configuration space of $M$ .  相似文献   

14.
In this paper, we give non-existence theorems for Hopf hypersurfaces in complex two-plane Grassmannians $G_2(\mathbb{C }^{m+2})$ with $\mathfrak D $ -parallel normal Jacobi operator ${\bar{R}}_N$ and $\mathfrak D $ -parallel structure Jacobi operator $R_{\xi }$ if the distribution $\mathfrak D $ or $\mathfrak D ^{\bot }$ component of the Reeb vector field is invariant by the shape operator, respectively.  相似文献   

15.
Let ${\beta(\mathbb{N})}$ denote the Stone–?ech compactification of the set ${\mathbb{N}}$ of natural numbers (with the discrete topology), and let ${\mathbb{N}^\ast}$ denote the remainder ${\beta(\mathbb{N})-\mathbb{N}}$ . We show that, interpreting modal diamond as the closure in a topological space, the modal logic of ${\mathbb{N}^\ast}$ is S4 and that the modal logic of ${\beta(\mathbb{N})}$ is S4.1.2.  相似文献   

16.
17.
We prove that the solution map of the $b$ -family equation is Hölder continuous as a map from a bounded set of $H^s(\mathbb{R }), s>\frac{3}{2}$ with $H^r(\mathbb{R })$ ( $0\le r<s$ ) topology, to $C([0, T], H^r(\mathbb{R }))$ for some $T>0$ . Moreover, we show that the obtained exponent of the Hölder continuity is optimal when $s-1<r<s$ .  相似文献   

18.
19.
We obtain a formula for the $n$ -dimensional distributions of the $\text{ Airy}_1$ process in terms of a Fredholm determinant on $L^2(\mathbb{R })$ , as opposed to the standard formula which involves extended kernels, on $L^2(\{1,\dots ,n\}\times \mathbb{R })$ . The formula is analogous to an earlier formula of Prähofer and Spohn (J Stat Phys 108(5–6):1071–1106, 2002) for the $\text{ Airy}_2$ process. Using this formula we are able to prove that the $\text{ Airy}_1$ process is Hölder continuous with exponent $\frac{1}{2}$ —and that it fluctuates locally like a Brownian motion. We also explain how the same methods can be used to obtain the analogous results for the $\text{ Airy}_2$ process. As a consequence of these two results, we derive a formula for the continuum statistics of the $\text{ Airy}_1$ process, analogous to that obtained in Corwin et al. (Commun Math Phys 2011, to appear) for the $\text{ Airy}_2$ process.  相似文献   

20.
Let α and β be functions in ${L^\infty(\mathbb{T})}$ , where ${\mathbb{T}}$ is the unit circle. Let P denote the orthogonal projection from ${L^2(\mathbb{T})}$ onto the Hardy space ${H^2(\mathbb{T})}$ , and Q = I ? P, where I is the identity operator on ${L^2(\mathbb{T})}$ . This paper is concerned with the singular integral operators S α,β on ${L^2(\mathbb{T})}$ of the form S α,β f = αPf + βQf, for ${f \in L^2(\mathbb{T})}$ . In this paper, we study the normality of S α,β which is related to the Brown–Halmos theorem for the normal Toeplitz operator on ${H^2(\mathbb{T})}$ .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号