首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The thermal entanglement in a two-qubit Heisenberg XXZ spin chain is investigated under a single pulse magnetic field Bsinθ. The paper shows that the greater the contribution of the inhomogeneity on the exchange interaction, the higher thermal entanglement will be attained at the fixed temperature except the case that $\theta=2k\pi+\frac{3}{2}\pi$ . J z  significantly disturb the thermal entanglement in uniform case. When the structure of the spin system are given, changing the external magnetic field B can induce controllable entanglement. Our study may provide a useful tool to change the entanglement of spin chain system.  相似文献   

2.
The effect of DziaJoshinski-Moriya (DM) interaction on thermal entanglement of a two-qubit XXZ spin chain in a homogenous magnetic field is investigated. It is found that the DM interaction can enhance thermal entanglement. When D is large enough, the entanglement can exist for larger temperatures and strong magnetic field.  相似文献   

3.
The effect of Dzialoshinski-Moriya (DM) interaction on thermal entanglement of a two-qubit XXZ spin chain in a homogenous magnetic field is investigated. It is found that the DM interaction can enhance thermal entanglement. When D is large enough, the entanglement can exist for larger temperatures and strong magnetic field.  相似文献   

4.
5.
The thermal entanglement of a three-qubit Heisenberg chain under a nonuniform magnetic field is studied. It is very interesting to note that the next nearest neighbor entanglement (NNNE) could be larger than the nearest neighbor entanglement (NNE). We analyze the ground state entanglement, and give the conditions that NNNE is larger than NNE near zero temperature. Our results also show that the nonuniform field could induce the entanglement and improve the threshold temperature at certain parameter region.  相似文献   

6.
研究了两量子比特海森堡XXX自旋链处于x方向的非均匀磁场时系统的纠缠特性,并用负度N来度量.得到N的解析表达式,并在此基础上进行数值计算.仔细讨论了均匀磁场B、非均匀磁场b、温度T和自旋耦合系数J对纠缠度N的影响.结果表明:N会随着■和T的增大而减小,但会随着J的增大而增大.同时,增大的J和b还会使临界磁场■和临界温度Tth变大,从而使系统中热纠缠存在的磁场范围和温度范围都变大.这一点在较大磁场和较高温度下需要纠缠具有实际意义.由此,我们可以通过调节B、b、T和J来控制热纠缠,这对固态系统中通过构建和选择参数调整系统的纠缠度具有一定的作用和意义.  相似文献   

7.
By introducing the nonuniform magnetic field, we investigate the entanglement teleportation via two-qubit Heisenberg chain. We show that for ferromagnetic chain, the opposite direction magnetic field on the two-qubit chain can excite the teleported entanglement C out, while the uniform magnetic field can not do it. The effect of the uniform magnetic field B and the nonuniform magnetic field b on the threshold temperature T c is also plotted. Our study on the average fidelity of this quantum channel system shows that the magnetic field in opposite direction can result in the ideal average fidelity no matter whether the chain is ferromagnetic or antiferromagnetic.  相似文献   

8.
The thermal entanglement of a two-qubit anisotropic Heisenberg XYZ chain under an inhomogeneous magnetic field b is studied. It is shown that when inhomogeneity is increased to a certain value, the entanglement can exhibit a larger revival than that of less values of b. The property is both true for zero temperature and a finite temperature. The results also show that the entanglement and threshold temperature can be increased by increasing inhomogeneous external magnetic field.  相似文献   

9.
The thermal entanglement of a two-qubit anisotropic Heisenberg XYZ chain under an inhomogeneous magnetic field b is studied. It is shown that when inhomogeneity is increased to a certain value, the entanglement can exhibit a larger revival than that of less values of b. The property is both true for zero temperature and a finite temperature. The results also show that the entanglement and threshold temperature can be increased by increasing inhomogeneous external magnetic field.  相似文献   

10.
The effects of the different Dzyaloshinskii-Moriya (DM) interaction on thermal entanglement of a two-qutrit Heisenberg XX spin chain in a nonuniform magnetic field are investigated. Our results imply that the x-component DM interaction plays a central role in enhancing quantum entanglement and it has a higher critical temperature than the z-component DM interaction. The entanglement can be tunable controlled by changing the multiple of the magnetic fields B1 and B2. Also we found that different DM interaction are competitive to each other in some conditions.  相似文献   

11.
The effects of the different Dzyaloshinskii-Moriya (DM) interaction on thermal entanglement of a two-qutrit Heisenberg XX spin chain in a nonuniform magnetic field are investigated. Our results imply that the x-component DM interaction plays a central role in enhancing quantum entanglement and it has a higher critical temperature than the z-component DM interaction. The entanglement can be tunable controlled by changing the multiple of the magnetic fields B1 and B2 . Also we found that different DM interaction are competitive to each other in some conditions.  相似文献   

12.
We calculate the eigenvalues and eigenvectors of a five-qubit isotropic Heisenberg model in an external magnetic field, and give analytical results for the concurrence of two nearest-neighbor qubits. A magnetic field can eliminate degeneration and change the ground state of the system. Therefore increasing the value of the magnetic field can induce entanglement in a certain range both for the antiferromagnetic and ferromagnetic case.  相似文献   

13.
本文研究了各向异性自旋12海森堡链中首尾粒子的纠缠动力学,其中外磁场和最近邻耦合是周期性调制的。在特定的外磁场调制频率和外磁场振幅下,将会出现纠缠共振。在某些特定频率下,最大纠缠可以在相当大的振幅范围内保持最大值。因此,可以通过外界磁场来调控纠缠。  相似文献   

14.
曹敏  朱士群 《中国物理快报》2006,23(11):2888-2891
The pair-wise thermal entanglement in a four-qubit Heisenberg XXZ chain & investigated to study the role of anisotropy when an external magnetic field is included. It is found that pair-wise entanglement is absent between nearest- and next-nearest neighbouring qubits with anisotropic parameter △≤-1. For two nearest-neighbouring qubits, increasing the parameter can not only induce the entanglement, but also extend the entanglement region in terms of magnetic field B and temperature T. For two next-nearest-neighbouring qubits, increasing anisotropic parameter can shift the location of the entanglement and control the extent of the entanglement in terms of magnetic field at a finite temperature.  相似文献   

15.
International Journal of Theoretical Physics - The dynamics of entanglement measured by concurrence and quantum correlation described by quantum discord under Ornstein-Uhlenbeck noise are...  相似文献   

16.
17.
通过计算比特数n不大于6海森堡XX链中的两体纠缠,发现只有当n为奇数时,最近邻纠缠在磁场为零时才出现下凹现象.当n为4或6时,非最近邻纠缠在磁场两边对称;当n为5时,非最近邻纠缠在磁场两边则不对称.  相似文献   

18.
Thermal entanglement of a two-qubit Heisenberg spin chain coupled to a single-mode cavity field is investigated. It is found that (1) thermal entanglement without the rotating-wave approximation (RWA) is explicitly smaller than that obtained with the RWA, which means that the counter-rotating terms have a large impact on thermal entanglement, therefore they cannot be neglected; (2) the case (ω≪Ω) is more beneficial for enhancing thermal entanglement than the resonance case (ω=Ω), the near-resonant case (ω≈Ω) and the case (ω≫Ω); (3) for thermal entanglement, there is a competition process between the exchange coupling J (the direct-coupling between the two two-level atoms) and the coupling constant g (which deduces the indirect effect between the two two-level atoms); the critical value of g increases with the spin coupling strength J.  相似文献   

19.
In this paper, we investigate the thermal entanglement of two-spin subsystems in an ensemble of coupled spin-half and spin-one triangular cells, (1/2, 1/2, 1/2), (1/2, 1, 1/2), (1, 1/2, 1) and (1, 1, 1) with the XXZ anisotropic Heisenberg model subjected to an external homogeneous magnetic field. We adopt the generalized concurrence as the measure of entanglement which is a good indicator of the thermal entanglement and the critical points in the mixed higher dimensional spin systems. We observe that in the near vicinity of the absolute zero, the concurrence measure is symmetric with respect to zero magnetic field and changes abruptly from a non-null to null value for a critical magnetic field that can be signature of a quantum phase transition at finite temperature. The analysis of concurrence versus temperature shows that there exists a critical temperature, that depends on the type of the interaction, i.e. ferromagnetic or antiferromagnetic, the anisotropy parameter and the strength of the magnetic field. Results show that the pairwise thermal entanglement depends on the third spin which affects the maximum value of the concurrence at absolute zero and at quantum critical points.  相似文献   

20.
The effects of spin-spin interaction on thermed entanglement of a two-qubit Heisenberg XYZ model with different inhomogeneous magnetic fields are investigated. It is shown that the entanglement is dependent on the spin-spin interaction and the inhomogeneous magnetic fields. The larger the Ji (i-axis spin-spin interaction), the higher critical value the Bi (i-axis uniform magnetic field) has. Moreover, in the weak-field regime, the larger Ji corresponds to more entanglement, while in the strong-field regime, different Ji correspond to the same entanglement. In addition, it is found that with the increase of Ji, the concurrence can approach the maximum value more rapidly for the smaller Bi, and can reach a larger value for the smaller bi (i-axis nonuniform magnetic field). So we can get more entanglement by increasing the spin-spin interaction Ji, or by decreasing the uniform magnetic field Bi and the nonuniform magnetic field hi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号