首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A computational procedure for analyzing acoustical scattering by multilayer concentric spherical scatterers having an arbitrary mixture of acoustic and elastic materials is proposed. The procedure is then used to analyze the scattering by a spherical scatterer consisting of a solid shell and a solid core encasing an electrorheological (ER) fluid layer, and the tunability in the scattering characteristics afforded by the ER layer is explored numerically. Tunable scatterers with two different ER fluids are analyzed. One, corn starch in peanut oil, shows that a significant increase in scattering cross-section is possible in moderate frequencies. Another, fine poly-methyl methacrylate (PMMA) beads in dodecane, shows only slight change in scattering cross-sections overall. But, when the shell is thin, a noticeable local resonance peak can appear near ka=1, and this resonance can be turned on or off by the external electric field.  相似文献   

2.
A new recursive algorithm for the solution of the problem of scattering of light (of an arbitrarily polarized plane electromagnetic wave) by multilayer confocal spheroidal particles is constructed. This approach preserves the advantages of the two approaches proposed earlier by us for single-layer and two-layer spheroids (special choice of scalar potentials and utilization of the basis of wave spheroidal harmonics) and for homogeneous axially symmetric particles (formulation of the problem in terms of surface integral equations, calculation of the potentials inside the particle from the potentials of the incident radiation, and calculation of the potentials of the scattered radiation from the potentials inside the particle). In the case of multilayer particles, the potential inside each shell is a sum of two terms. The first has the properties of the incident radiation (no singularities inside the volume enclosed by the external boundary of the shell), whereas the second term has the properties of the scattered radiation (satisfies the radiation conditions at infinity). Therefore, as the calculation progresses from one layer to the next (from the core to the outer shell), the dimensionality of the reduced linear matrix equations for the unknown expansion coefficients of the scattered field potentials does not increase with respect to the case of a homogeneous spheroid. The algorithm is particularly simple and lucid (as far as possible for such a complex problem). In the case of spherical multilayer particles, the solution can be found explicitly.  相似文献   

3.
According to the equation of motion in the elastic medium and integral equation of target scattering, the sound scattering from the partially water-filled elastic spherical shells with and without an inner plate is studied using the finite element and boundary element method, and the scattering normalized form functions of the shell filled with different volume of water are computed and the mechanism of resonance scattering is analyzed. The results show that the resonance of the shell with partially water-filled and without the plate is mainly related to the volume of water, and the resonance is produced by inner water and the spherical shell. The resonance characteristics of partially water-filled elastic shell with the plate are similar to that of empty structured elastic spherical shell, and the sound field in inner water is weaker which indicates the main resonance characteristics are decided by spherical shell and the plate. In addition, the scattering characteristics of spherical shell with plate and one side full water-filled are greatly different from the partially water-filled ones.  相似文献   

4.
The Mie problem with modified boundary conditions that take into account the influence of a thin surface layer on the scattering of an electromagnetic wave by a spherical particle is considered. Analytical equations are derived for the partial amplitudes of scattered waves and forced oscillations. These equations are applicable in the case of anisotropy and gyrotropy of an optical response from the surface layer.  相似文献   

5.
Through acoustic scattering theory we derive the mass density and bulk modulus of a spherical shell that can eliminate scattering from an arbitrary object in the interior of the shell--in other words, a 3D acoustic cloaking shell. Calculations confirm that the pressure and velocity fields are smoothly bent and excluded from the central region as for previously reported electromagnetic cloaking shells. The shell requires an anisotropic mass density with principal axes in the spherical coordinate directions and a radially dependent bulk modulus. The existence of this 3D cloaking shell indicates that such reflectionless solutions may also exist for other wave systems that are not isomorphic with electromagnetics.  相似文献   

6.
Acoustic scattering by benthic and planktonic shelled animals   总被引:1,自引:0,他引:1  
Acoustic backscattering measurements and associated scattering modeling were recently conducted on a type of benthic shelled animal that has a spiral form of shell (Littorina littorea). Benthic and planktonic shelled animals with this shape occur on the seafloor and in the water column, respectively, and can be a significant source of acoustic scattering in the ocean. Modeling of the scattering properties allows reverberation predictions to be made for sonar performance predictions as well as for detection and classification of animals for biological and ecological applications. The studies involved measurements over the frequency range 24 kHz to 1 MHz and all angles of orientation in as small as 1 degree increments. This substantial data set is quite revealing of the physics of the acoustic scattering by these complex shelled bodies and served as a basis for the modeling. Specifically, the resonance structure of the scattering was strongly dependent upon angle of orientation and could be traced to various types of rays (e.g., subsonic Lamb waves and rays entering the opercular opening). The data are analyzed in both the frequency and time domain (compressed pulse processing) so that dominant scattering mechanisms could be identified. Given the complexity of the animal body (irregular elastic shell with discontinuities), approximate scattering models are used with only the dominant scattering properties retained. Two models are applied to the data, both approximating the body as a deformed sphere: (1) an averaged form of the exact modal-series-based solution for the spherical shell, which is used to estimate the backscattering by a deformed shell averaged over all angles of orientation, and produces reasonably accurate predictions over all k1a(esr) (k1 is the acoustic wave number of the surrounding water and a(esr) is the equivalent spherical radius of the body), and (2) a ray-based formula which is used to estimate the scattering at fixed angle of orientation, but only for high k1a(esr). The ray-based model is an extension of a model recently developed for the shelled zooplankton Limacina retroversa that has a shape similar to that of the Littorina littorea but swims through the water [Stanton et al., J. Acoust. Soc. Am. 103, 236-253 (1998b)]. Applications of remote detection and classification of the seafloor and water column in the presence of shelled animals are discussed.  相似文献   

7.
An exact solution to the problem of light scattering by multilayer axially symmetric particles is derived and some aspects of its computer-aided implementation are discussed. The main specific features of the solution are (i) separation of the incident, scattered, and internal fields into two parts and special selection of the scalar potentials for each of them; (ii) expansion of the potentials in terms of spherical wave functions; (iii) formulation of the problem in the form of surface integral equations; and (iv) solution of the reduced systems of the linear algebraic equations for the coefficients of the potential expansions. Mathematical justification of the solution is discussed, which is formulated in the recursive and nonrecursive form (for the T-matrix). The developed computer program has shown that the proposed approach makes it possible to consider axially symmetric particles with essentially different internal structures (i.e., with a spherical core, oblate spheroidal shell, or prolate spheroidal intermediate layer). The results of calculations of the optical properties of the multilayer nonspherical particles are presented and discussed.  相似文献   

8.
Multiple backscattering of light by a layer of a discrete random medium is considered. A brief derivation of equations for describing the coherent and incoherent components of scattered light is presented. These equations are solved numerically in the approximation of doubled scattering of light by a semi-infinite medium of spherical scatterers having a size comparable with the wavelength in order to study the effect of the properties of particles on the angular dependence of interference effects. Calculations show that the half-width of the interference peak decreases upon an increase in lateral scattering by particles and that the degree of polarization has a complex angular dependence on the properties of the particles. For an optically thin layer of the medium, the relations defining the interference peak half-width and the scattering angle upon extreme linear polarization as functions of the effective refractive index are given.  相似文献   

9.
A representation is obtained for the quasiclassical Green functions of the Dirac and Klein-Gordon equations allowing for the first nonvanishing correction in an arbitrary localized potential which generally possesses no spherical symmetry. This is used to obtain a solution of these equations in an approximation similar to the Furry-Sommerfeld-Maue approximation. It is shown that the quasiclassical Green function does not reduce to the Green function obtained in the eikonal approximation and has a wider range of validity. This is illustrated by calculating the amplitude of small-angle scattering of a charged particle and the amplitude of Delbrück forward scattering. A correction proportional to the scattering angle was obtained for the amplitude of charged particle scattering in a potential possessing no spherical symmetry. The real part of the Delbrück forward scattering amplitude was calculated in a screened Coulomb potential.  相似文献   

10.
When calibrating a broadband active acoustic system with a single standard target such as a sphere, the inherent resonances associated with the scattering by the sphere pose a significant challenge. In this paper, a method is developed which completely eliminates the source of resonances through isolating and exploiting the echo from the front interface of a sphere. This echo is relatively insensitive to frequency over a wide range of frequencies, lacking resonances, and is relatively insensitive to small changes in material properties and, in the case of spherical shells, shell thickness. The research builds upon the concept of using this echo for calibration in the work of Dragonette et al. [J. Acoust. Soc. Am. 69, 1186-1189 (1981)]. This current work generalizes that of Dragonette by (1) incorporating a pulse compression technique to significantly improve the ability to resolve the echo, and (2) rigorously accounting for the scattering physics of the echo so that the technique is applicable over a wide range of frequencies and material properties of the sphere. The utility of the new approach is illustrated through application to data collected at sea with an air-filled aluminum spherical shell and long broadband chirp signals (30-105 kHz).  相似文献   

11.
The development of low-frequency sonar systems, using, for instance, a network of autonomous systems in unmanned vehicles, provides a practical means for bistatic measurements (i.e., when the source and receiver are widely separated) allowing for multiple viewpoints of the target of interest. Time-frequency analysis, in particular, Wigner-Ville analysis, takes advantage of the evolution time dependent aspect of the echo spectrum to differentiate a man-made target, such as an elastic spherical shell, from a natural object of the similar shape. A key energetic feature of fluid-loaded and thin spherical shell is the coincidence pattern, also referred to as the mid-frequency enhancement (MFE), that results from antisymmetric Lamb-waves propagating around the circumference of the shell. This article investigates numerically the bistatic variations of the MFE with respect to the monostatic configuration using the Wigner-Ville analysis. The observed time-frequency shifts of the MFE are modeled using a previously derived quantitative ray theory by Zhang et al. [J. Acoust. Soc. Am. 91, 1862-1874 (1993)] for spherical shell's scattering. Additionally, the advantage of an optimal array beamformer, based on joint time delays and frequency shifts is illustrated for enhancing the detection of the MFE recorded across a bistatic receiver array when compared to a conventional time-delay beamformer.  相似文献   

12.
A method is presented for calculating the far field sound radiation from a shallow spherical shell in an acoustic medium. The shell has a concentrated ring mass boundary condition at its perimeter representing a loudspeaker voice coil and is excited by a concentrated ring force exerted by the end of the voice coil. A Green's function is developed for a shallow spherical shell, which is based upon Reissner's solution to the shell wave equation [Q. Appl. Math. 13, 279-290 (1955)]. The shell is then coupled to the surrounding acoustic medium using an eigenfunction expansion, with unknown coefficients, for its deflection. The resulting surface pressure distribution is solved using the King integral together with the free space Green's function in cylindrical coordinates. In order to eliminate the need for numerical integration, the radiation (coupling) integrals are solved analytically to yield fast converging expansions. Hence, a set of simultaneous equations is obtained which is solved for the coefficients of the eigenfunction expansion. These coefficients are finally used in formulas for the far field sound radiation.  相似文献   

13.
The atmospheres of planets (including Earth) and the outer layers of stars have often been treated in radiative transfer as plane-parallel media, instead of spherical shells, which can lead to inaccuracy, e.g. limb darkening. We give an exact solution of the radiative transfer specific intensity at all points and directions in a finite spherical medium having arbitrary radial spectral distribution of: source (temperature), absorption, emission and anisotropic scattering. The power and efficiency of the method stems from the spherical numerical gridding used to discretize the transfer equations prior to matrix solution: the wanted ray and the rays which scatter into it both have the same physico-geometric structure. Very good agreement is found with an isotropic astrophysical benchmark [Avrett EH, Loeser R. Methods in radiative transfer. In: Kalkofen W, editor. Cambridge: Cambridge University Press; 1984. pp. 341-79]. We introduce a specimen arbitrary forward- side-back phase scattering function for future comparisons. Our method directly and exactly addresses spherical symmetry with anisotropic scattering, and could be used to study the Earth's climate, nuclear power (neutron diffusion) and the astrophysics of stars and planets.  相似文献   

14.
The method of wave function expansion is adopted to study the three dimensional scattering of a time-harmonic plane progressive sound field obliquely incident upon a multi-layered hollow cylinder with interlaminar bonding imperfection. For the generality of solution, each layer is assumed to be cylindrically orthotropic. An approximate laminate model in the context of the modal state equations with variable coefficients along with the classical T-matrix solution technique is set up for each layer to solve for the unknown modal scattering and transmission coefficients. A linear spring model is used to describe the interlaminar adhesive bonding whose effects are incorporated into the global transfer matrix by introduction of proper interfacial transfer matrices. Following the classic acoustic resonance scattering theory (RST), the scattered field and response to surface waves are determined by constructing the partial waves and obtaining the non-resonance (backgrounds) and resonance components. The solution is first used to investigate the effect of interlayer imperfection of an air-filled and water submerged bilaminate aluminium cylindrical shell on the resonances associated with various modes of wave propagation (i.e., symmetric/asymmetric Lamb waves, fluid-borne A-type waves, Rayleigh and Whispering Gallery waves) appearing in the backscattered spectrum, according to their polarization and state of stress. An illustrative numerical example is also given for a multi-layered (five-layered) cylindrical shell for which the stiffness of the adhesive interlayers is artificially varied. The sensitivity of resonance frequencies associated with higher mode numbers to the stiffness coefficients is demonstrated to be a good measure of the bonding strength. Limiting cases are considered and fair agreements with solutions available in the literature are established.  相似文献   

15.
Machado JC  Valente JS 《Ultrasonics》2003,41(8):605-613
The oscillations of gas bubbles, without shell, immersed in viscoelastic liquids and driven by an acoustic wave have been the subject of several investigations. They demonstrate that the viscosity coefficient and the spring constant of the liquid have significant influence on the scattering cross section of the gas bubble. For shell-encapsulated gas bubbles, the investigations have been concentrated to bubbles immersed in a pure viscous liquid. This present work computes the ultrasonic scattering cross section, first and second harmonics, of shell-encapsulated gas bubbles immersed in a viscoelastic liquid. The theoretical model of the bubble oscillation is based on the generalized Rayleigh-Plesset equation of motion of a spherical cavity immersed in a viscoelastic liquid represented by a three-parameter linear Oldroyd model. The scattering cross section is computed for Albunex type of bubble (shell thickness=15 nm, shell shear viscosity=1.77 Pas, shell modulus of rigidity=88.8 MPa) irradiated by a 3.5 MHz ultrasonic pressure wave with an amplitude of 30 kPa. The results demonstrate that encapsulated bubbles respond independently of the surrounding liquid being pure viscous or viscoelastic as long as the surrounding liquid shear viscosity is as low as 10(-3) Pas. Nevertheless, for higher shear viscosities, the bubble responds differently if the surrounding liquid is pure viscous or viscoelastic. In general, the scattering cross sections of first and second harmonics are larger for the viscoelastic liquid.  相似文献   

16.
Scattering and radiation of acoustic waves from a fluid-loaded cylindrical shell with an external compliant layer are of interest. The compliant layer can be modeled by a normally reacting impedance layer, which has the advantage that complex compliant layer geometries, such as partial compliant layers, can be considered. A question may, however, arise as to the accuracy of this approach. A more rigorous approach is to model the elastic shell and compliant layer using a multilayer shell theory, which has the disadvantage that it cannot be extended to consider partial layers. In this paper scattering results from the normally reacting compliant layer model are compared to those from the multilayer shell model to show that the two approaches produce similar results, except for thickness resonances of the compliant layer. Having established the consistency between the two approaches, results for the far-field acoustic radiation as a function of frequency and radiation angle for a fluid-loaded shell with an external compliant layer excited by an internal ring force are obtained using the normally reacting impedance layer model. These results clearly show the reduction in the far field radiation due to the presence of the compliant layer.  相似文献   

17.
The pattern equations method is extended to solving the diffraction problem on a group of bodies. The problem is reduced to solving an algebraic system of equations with respect to the expansion coefficients of the scattering patterns by using a series expansion of the scattering patterns in angular spherical harmonics. The explicit (asymptotic) solution of the problem is obtained in a case when the scattering bodies are far enough from each other.  相似文献   

18.
Scattering functions arise naturally in standard treatments of the effects of a material object or surface embedded in a uniform field. The most commonly used scattering function describes the far-field modulation imparted at large distances to a spherical wavefront eminating from the scatterer. The purpose of this is to develop the properties of the spectrum of scattered plane waves as an exact generalized scattering function. The linearity of the wave equations guarantees that such a representation exists; moreover, it is possible to derive the generalized scattering function from the far-field scattering function by analytic continuation. Although these properties are known, recent theoretical developments have motivated us to reexplore the interrelations among the far-field scattering function, the Green's function and various forms of the generalized scattering function as well as the symmetry properties of the generalized scattering function imposed by reciprocity. For multiple-scattering objects that can be separated by parallel planes, a system of difference equations is developed that fully accommodates the mutual interaction among the scatterers. The mutual interaction equations were developed earlier, but we show here that they can be transformed into the form that would be obtained by using the Foldy-Lax-Twersky formalism. This reinforces the equivalence between wave-space and configuration space formulations of the scattering problems.  相似文献   

19.
沈浩明 《物理学报》1978,27(5):533-546
本文用三个球坐标面将球面镜包围,同时把空间切割为三个区域,分别求得通解;再利用边界条件得到了系数方程组。用它来计算球面天线的辐射场,利用会聚波和发散波的概念,得到了严格的解析解。 关键词:  相似文献   

20.
Pustovalov  V. K.  Astafyeva  L. G. 《Laser Physics》2011,21(12):2098-2107
Nonlinear absorption, scattering and extinction of laser radiation with wavelengths 532, 633 nm by spherical gold nanoparticles (NPs) with radii in the range of 5–100 nm placed in water and heated by laser radiation with formation and expansion of vapor nanoshells is theoretically investigated. Decrease of absorption, decrease and subsequent increase of scattering and extinction with increasing of shell radius beginning from the initial period of shell expansion is established. Optical indicatrixes and nonlinear behavior of scattered radiation are investigated including the examination of these characteristics during the adiabatic expansion of vapor shell. Formation of vapor nanoshells (bubbles) as a result of the action of short laser pulses on NPs placed in tissue was proposed for cutting of tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号