首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
In a recent experimental work the Ir complex [Ir(cod)(py)(PCy(3))](PF(6)) (that is, Crabtree's catalyst) has been shown to catalyze the C-H arylation of electron-rich heteroarenes with iodoarenes using Ag(2)CO(3) as base. For this process, an electrophilic metalation mechanism, (S(E)Ar) has been proposed as operative mechanism rather than the concerted metalation-deprotonation (CMD) mechanism, widely implicated in Pd-catalyzed arylation reactions. Herein we have investigated the C-H activation step for several (hetero)arenes catalyzed by a Ir(III) catalyst and compared the data obtained with the results for the Pd(II)-catalyzed C-H bond activation. The calculations demonstrate that, similar to Pd(II)-catalyzed reactions, the Ir(III)-catalyzed direct C-H arylation occurs through the CMD pathway which accounts for the experimentally observed regioselectivity. The transition states for Ir(III)-catalyzed direct C-H arylation feature stronger metal-C((arene)) interactions than those for Pd(II)-catalyzed C-H arylation. The calculations also demonstrate that ligands with low trans effect may decrease the activation barrier of the C-H bond cleavage.  相似文献   

2.
An efficient catalytic system has been developed for the synthesis of benzocyclobutenes by C-H activation of methyl groups. The optimal conditions employed a combination of Pd(OAc) 2 and P ( t )Bu 3 as catalyst, K 2CO 3 as the base, and DMF as solvent. A variety of substituted BCB were obtained under these conditions with yields in the 44-92% range, including molecules that are hardly accessible by other methods. The reaction was found limited to substrates bearing a quaternary benzylic carbon, but benzocyclobutenes bearing a tertiary benzylic carbon could be obtained indirectly from diesters by decarboxylation. Reaction substrates bearing a small substituent para to bromine gave an unexpected regioisomer that likely arose from a 1,4-palladium migration process. The formation of this "abnormal" regioisomer could be suppressed by introducing a larger subsituent para to bromine. DFT(B3PW91) calculations on the reaction of 2-bromo-tert-butylbenzene with Pd(P ( t )Bu 3) with different bases (acetate, bicarbonate, carbonate) showed the critical influence of the coordination mode of the base to induce both an easy C-H activation and to allow for a pathway for 1,4-palladium migration. Carbonate is shown to be more efficient than the two other bases because it can abstract the proton easily and at the same time maintain kappa (1)-coordination without extensive electronic reorganization.  相似文献   

3.
The neopentylidene-neopentyl complex (PNP)Ti=CH(t)Bu(CH2(t)Bu) (2; PNP(-) = N[2-P(CHMe2)(2-)4-methylphenyl]2), prepared from the precursor (PNP)Ti[triple bond]CH(t)Bu(OTf) (1) and LiCH2(t)Bu, extrudes neopentane in neat benzene under mild conditions (25 degrees C) to generate the transient titanium alkylidyne, (PNP)Ti[triple bond]C(t)Bu (A), which subsequently undergoes 1,2-CH bond addition of benzene across the Ti[triple bond]C linkage to generate (PNP)Ti=CH(t)Bu(C6H5) (3). Kinetic, mechanistic, and theoretical studies suggest the C-H activation process to obey pseudo-first-order in titanium, the alpha-hydrogen abstraction to be the rate-determining step (KIE for 2/2-d(3) conversion to 3/3-d(3) = 3.9(5) at 40 degrees C) with activation parameters DeltaH = 24(7) kcal/mol and DeltaS = -2(3) cal/mol.K, and the post-rate-determining step to be C-H bond activation of benzene (primary KIE = 1.03(7) at 25 degrees C for the intermolecular C-H activation reaction in C6H6 vs C6D6). A KIE of 1.33(3) at 25 degrees C arose when the intramolecular C-H activation reaction was monitored with 1,3,5-C6H3D3. For the activation of aromatic C-H bonds, however, the formation of the sigma-complex becomes rate-determining via a hypothetical intermediate (PNP)Ti[triple bond]C(t)Bu(C6H5), and C-H bond rupture is promoted in a heterolytic fashion by applying standard Lewis acid/base chemistry. Thermolysis of 3 in C6D6 at 95 degrees C over 48 h generates 3-d(6), thereby implying that 3 can slowly equilibrate with A under elevated temperatures with k = 1.2(2) x 10-5 s(-1), and with activation parameters DeltaH = 31(16) kcal/mol and DeltaS = 3(9) cal/mol x K. At 95 degrees C for one week, the EIE for the 2 --> 3 reaction in 1,3,5-C6H3D3 was found to be 1.36(7). When 1 is alkylated with LiCH2SiMe3 and KCH2Ph, the complexes (PNP)Ti=CHtBu(CH2SiMe3) (4) and (PNP)Ti=CHtBu(CH2Ph) (6) are formed, respectively, along with their corresponding tautomers (PNP)Ti=CHSiMe3(CH2tBu) (5) and (PNP)Ti=CHPh(CH2tBu) (7). By means of similar alkylations of (PNP)Ti=CHSiMe3(OTf) (8), the degenerate complex (PNP)Ti=CHSiMe3(CH2SiMe3) (9) or the non-degenerate alkylidene-alkyl complex (PNP)Ti=CHPh(CH2SiMe3) (11) can also be obtained, the latter of which results from a tautomerization process. Compounds 4/5 and 9, or 6/7 and 11, also activate benzene to afford (PNP)Ti=CHR(C6H5) (R = SiMe3 (10), Ph (12)). Substrates such as FC6H5, 1,2-F2C6H4, and 1,4-F2C6H4 react at the aryl C-H bond with intermediate A, in some cases regioselectively, to form the neopentylidene-aryl derivatives (PNP)Ti=CHtBu(aryl). Intermediate A can also perform stepwise alkylidene-alkyl metatheses with 1,3,5-Me3C6H3, SiMe4, 1,2-bis(trimethylsilyl)alkyne, and bis(trimethylsilyl)ether to afford the titanium alkylidene-alkyls (PNP)Ti=CHR(R') (R = 3,5-Me2C6H2, R' = CH2-3,5-Me2C6H2; R = SiMe3, R' = CH2SiMe3; R = SiMe2CCSiMe3, R' = CH2SiMe2CCSiMe3; R = SiMe2OSiMe3, R' = CH2SiMe2OSiMe3).  相似文献   

4.
The reaction of Ln(AlMe(4))(3) with bulky hydrotris(pyrazolyl)borate (Tp(t)(Bu,Me))H proceeds via a sequence of methane elimination and C-H bond activation, affording unprecedented rare-earth metal ligand moieties including Ln(Me)[(micro-Me)AlMe(3)] and X-ray structurally characterized "Tebbe-like" Ln[(micro-CH(2))(2)AlMe(2)].  相似文献   

5.
The isomerization of olefins by complexes of the pincer-ligated iridium species ((tBu)PCP)Ir ((tBu)PCP = κ(3)-C(6)H(3)-2,6-(CH(2)P(t)Bu(2))(2)) and ((tBu)POCOP)Ir ((tBu)POCOP = κ(3)-C(6)H(3)-2,6-(OP(t)Bu(2))(2)) has been investigated by computational and experimental methods. The corresponding dihydrides, (pincer)IrH(2), are known to hydrogenate olefins via initial Ir-H addition across the double bond. Such an addition is also the initial step in the mechanism most widely proposed for olefin isomerization (the "hydride addition pathway"); however, the results of kinetics experiments and DFT calculations (using both M06 and PBE functionals) indicate that this is not the operative pathway for isomerization in this case. Instead, (pincer)Ir(η(2)-olefin) species undergo isomerization via the formation of (pincer)Ir(η(3)-allyl)(H) intermediates; one example of such a species, ((tBu)POCOP)Ir(η(3)-propenyl)(H), was independently generated, spectroscopically characterized, and observed to convert to ((tBu)POCOP)Ir(η(2)-propene). Surprisingly, the DFT calculations indicate that the conversion of the η(2)-olefin complex to the η(3)-allyl hydride takes place via initial dissociation of the Ir-olefin π-bond to give a σ-complex of the allylic C-H bond; this intermediate then undergoes C-H bond oxidative cleavage to give an iridium η(1)-allyl hydride which "closes" to give the η(3)-allyl hydride. Subsequently, the η(3)-allyl group "opens" in the opposite sense to give a new η(1)-allyl (thus completing what is formally a 1,3 shift of Ir), which undergoes C-H elimination and π-coordination to give a coordinated olefin that has undergone double-bond migration.  相似文献   

6.
A combination of experimental studies and density functional theory calculations is used to study C-N bond activation in a series of ruthenium N-alkyl-substituted heterocyclic carbene (NHC) complexes. These show that prior C-H activation of the NHC ligand renders the system susceptible to irreversible C-N activation. In the presence of a source of HCl, C-H activated Ru(I(i)Pr(2)Me(2))'(PPh(3))(2)(CO)H (1, I(i)Pr(2)Me(2) = 1,3-diisopropyl-4,5-dimethylimidazol-2-ylidene) reacts to give Ru(I(i)PrHMe(2))(PPh(3))(2)(CO)HCl (2, I(i)PrHMe(2) = 1-isopropyl-4,5-dimethylimidazol-2-ylidene) and propene. The mechanism involves (i) isomerization to a trans-phosphine isomer, 1c, in which hydride is trans to the metalated alkyl arm, (ii) C-N cleavage to give an intermediate propene complex with a C2-metalated imidazole ligand, and (iii) N-protonation and propene/Cl(-) substitution to give 2. The overall computed activation barrier (ΔE(++)(calcd)) corresponds to the isomerization/C-N cleavage process and has a value of +24.4 kcal/mol. C-N activation in 1c is promoted by the relief of electronic strain arising from the trans disposition of the high-trans-influence hydride and alkyl ligands. Experimental studies on analogues of 1 with different C4/C5 carbene backbone substituents (Ru(I(i)Pr(2)Ph(2))'(PPh(3))(2)(CO)H, Ru(I(i)Pr(2))'(PPh(3))(2)(CO)H) or different N-substituents (Ru(IEt(2)Me(2))'(PPh(3))(2)(CO)H) reveal that Ph substituents promote C-N activation. Calculations confirm that Ru(I(i)Pr(2)Ph(2))'(PPh(3))(2)(CO)H undergoes isomerization/C-N bond cleavage with a low barrier of only +21.4 kcal/mol. Larger N-alkyl groups also facilitate C-N bond activation (Ru(I(t)Bu(2)Me(2))'(PPh(3))(2)(CO)H, ΔE(++)(calcd) = +21.3 kcal/mol), and in this case the reaction is promoted by the formation of the more highly substituted 2-methylpropene.  相似文献   

7.
The study of the reaction between the ethylene [Pt(eta-H2C = CH2)(PPh3)2] or alkyne [Pt(eta2-HC [triple bond] CR)(PPh3)2] (R = SiMe3 1, Bu(t) 2) complexes with [cis-Pt(C6F5)2(thf)2] (thf = tetrahydrofuran) has enabled us to observe the existence of competitive processes between the activation of a P-C(Ph) bond on the PPh3 ligand, to give the binuclear derivative [cis-(C6F5)2Pt(mu-Ph)(mu-PPh2)Pt(PPh3)] 3, and the activation of a C-H bond of the unsaturated group, to give the corresponding (mu-hydride)(mu-vinyl) [cis, cis-(PPh3)2Pt(mu-H)(mu-1kappaC(alpha):eta2-CH = CH2)Pt(C6F5)2] 4 or (mu-hydride)(mu-alkynyl) [cis,cis-(PPh3)2Pt(mu-H)(mu-1kappaC(alpha):eta2-C [triple bond]CR)Pt(C6F5)2] (R = SiMe3 5, Bu(t) 6) compounds, respectively. The monitoring of these reactions by NMR spectroscopy has allowed us to detect several intermediates, and to propose a mechanism for the C-H bond activation. In addition, the structures of the (muo-hydride)(mu-alkynyl) complex 5 and the unprecedented (mu-hydride)(mu-vinyl) derivative 4 have been obtained by X-ray crystallographic analyses.  相似文献   

8.
Iron oxidation, in conjunction with NO coordination, achieved a C-H bond activation to convert [Fe(II)(HCTPPCH(3))Br] into [Fe(HCTPPCH(2))(NO)](BF(4)) at ambient temperature. The structural data and theoretical calculations confirmed the role of nitric oxide behaving as a π-accepting ligand to assist the C-H bond activation.  相似文献   

9.
The first example of PSiN mixed-donor silyl pincer ligation is described. Studies involving platinum group metal complexes of [(2-(t)Bu(2)PC(6)H(4))(2-Me(2)NC(6)H(4))SiMe](-) ((t)Bu-PSiN-Me) confirmed that the ligand amino donor is labile. Within the coordination sphere of Ru, (t)Bu-PSiN-Me is transformed into a PSiC ligand via multiple C-H bond activation events.  相似文献   

10.
M(2)(O(t)Bu)(6) compounds (M = Mo, W) react in hydrocarbon solvents with an excess of (t)BuSH to give M(2)(O(t)Bu)(2)(S(t)Bu)(4), red, air- and temperature-sensitive compounds. (1)H NMR studies reveal the equilibrium M(2)(O(t)Bu)(6) + 4(t)BuSH <==> M(2)(O(t)Bu)(2)(S(t)Bu)(4) + 4(t)BuOH proceeds to the right slowly at 22 degrees C. The intermediates M(2)(O(t)Bu)(4)(S(t)Bu)(2), M(2)(O(t)Bu)(3)(S(t)Bu)(3), and M(2)(O(t)Bu)(5)(S(t)Bu) have been detected. The equilibrium constants show the M-O(t)Bu bonds to be enthalpically favored over the M-S(t)Bu bonds. In contrast to the M(2)(O(t)Bu)(6) compounds, M(2)(O(t)Bu)(2)(S(t)Bu)(4) compounds are inert with respect to the addition of CO, CO(2), ethyne, (t)BuC triple bond CH, MeC triple bond N, and PhC triple bond N. Addition of an excess of (t)BuSH to a hydrocarbon solution of W(2)(O(t)Bu)(6)(mu-CO) leads to the rapid expulsion of CO and subsequent formation of W(2)(O(t)Bu)(2)(S(t)Bu)(4). Addition of an excess of (t)BuSH to hydrocarbon solutions of [Mo(O(t)Bu)(3)(NO)](2) and W(O(t)Bu)(3)(NO)(py) gives the structurally related compounds [Mo(S(t)Bu)(3)(NO)](2) and W(S(t)Bu)(3)(NO)(py), with linear M-N-O moieties and five-coordinate metal atoms. The values of nu(NO) are higher in the related thiolate compounds than in their alkoxide counterparts. The bonding in the model compounds M(2)(EH)(6), M(2)(OH)(2)(EH)(4), (HE)(3)M triple bond CMe, and W(EH)(3)(NO)(NH(3)) and the fragments M(EH)(3), where M = Mo or W and E = O or S, has been examined by DFT B3LYP calculations employing various basis sets including polarization functions for O and S and two different core potentials, LANL2 and relativistic CEP. BLYP calculations were done with ZORA relativistic terms using ADF 2000. The calculations, irrespective of the method used, indicate that the M-O bonds are more ionic than the M-S bonds and that E ppi to M dpi bonding is more important for E = O. The latter raises the M-M pi orbital energies by ca. 1 eV for M(2)(OH)(6) relative to M(2)(SH)(6). For M(EH)(3) fragments, the metal d(xz)(),d(yz)() orbitals are destabilized by OH ppi bonding, and in W(EH)(3)(NO)(NH(3)) the O ppi to M dpi donation enhances W dpi to NO pi* back-bonding. Estimates of the bond strengths for the M triple bond M in M(2)(EH)(6) compounds and M triple bond C in (EH)(3)M triple bond CMe have been obtained. The stronger pi donation of the alkoxide ligands is proposed to enhance back-bonding to the pi* orbitals of alkynes and nitriles and facilitate their reductive cleavage, a reaction that is not observed for their thiolate counterpart.  相似文献   

11.
This paper reports calculations that probe the role of R (hydrocarbon) and R' (ligand substituent) effects on the reaction coordinate for C [bond] H activation: Ti(OR')(2)(=NR') + RH --> adduct --> transition state --> (OR')(2)Ti(N(H)R')(R). Compounds with R = H, Me, Et, Vy, cPr, Ph, Cy, Bz, and cubyl are studied using quantum (R' = H, SiH(3), SiMe(3)) and classical (R' = Si(t)Bu(3)) techniques. Calculated geometries are in excellent agreement with data for experimental models. There is little variability in the calculated molecular structure of the reactants, products, and most interestingly, transition states as R and R' are changed. Structural flexibility is greatest in the adducts Ti(OR')(2)(=NR')...HR. Despite the small structural changes observed for Ti(OR')(2)(double bond] NR') with different R', significant changes are manifested in calculated electronic properties (the Mulliken charge on Ti becomes more positive and the Ti [double bond] N bond order decreases with larger R'), changes that should facilitate C [bond] H activation. Substantial steric modification of the alkane complex is expected from R [bond] R' interactions, given the magnitude of Delta G(add) and the conformational flexibility of the adduct. Molecular mechanics simulations of Ti(OSi(t)Bu(3))(2)([double bond] NSi(t)Bu(3))...isopentane adducts yield an energy ordering as a function of the rank of the C [bond] H bond coordinated to Ti that is consistent with experimental selectivity patterns. Calculated elimination barriers compare very favorably with experiment; larger SiH(3) and TMS ligand substituents generally yield better agreement with experiment, evidence that the modeling of the major contributions to the elimination barrier (N [bond] H and C [bond] H bond making) is ostensibly correct. Calculations indicate that weakening the C [bond] H bond of the hydrocarbon yields a more strongly bound adduct. Combining the different conclusions, the present computational research points to the adduct, specifically the structure and energetics of the substrate/Ti-imido interaction, as the main factor in determining the selectivity of hydrocarbon (R) C [bond] H activation.  相似文献   

12.
The photochemical C-H activation reactions of eta(3)-TpRh(CO)(2) (Tp = HB-Pz(3), Pz = 3,5-dimethylpyrazolyl) and CpRh(CO)(2) (Cp = C(5)H(5)) have been studied in a series of linear, cyclic, and aromatic hydrocarbon solvents on a femtosecond to microsecond time scale. These results have revealed that the structure of the hydrocarbon substrate affects the final C-H bond activation step, which is in accordance with the known preference of bond activation toward primary C-H sites. In the case of aromatic C-H activation, the reaction is divided into parallel channels involving sigma- and pi-solvated intermediates. Results for the analogous CpRh(CO)(2) molecule have shown that the coordination of the cyclopentadienyl ligand does not play a direct role in the dynamics of the reaction, in contrast to the C-H activation mechanism observed in eta(3)-TpRh(CO)(2) studies.  相似文献   

13.
Bis(1-R-imidazol-2-yl)disulfides, (mim(R))2 (R = Ph, Bu(t)), and diselenides, (seim(Mes))2, serve as bidentate N,N-donor ligands for main-group and transition metals. For example, [kappa2-(mim(Bu)(t))2]MCl2 (M = Fe, Co, Ni, Zn), [kappa2-(mim(Ph))2]MCl2 (M = Co, Zn), [kappa2-(mim(Bu)(t))2]CuX (X = Cl, I), and [kappa2-(seim(Mes))2]MCl2 (M = Fe, Co, Ni) are obtained by treatment of (mim(Bu)(t))2 or (seim(Mes))2 with the respective metal halide and have been structurally characterized by X-ray diffraction. On the other hand, the zerovalent nickel complex Ni(PMe3)4 effects cleavage of the disulfide bond of (mim(Bu)(t))2 to give square-planar trans-Ni(PMe3)2(mim(Bu)(t))2 in which the (mim(Bu)(t)) ligands coordinate via nitrogen rather than sulfur, a most uncommon coordination mode for this class of ligands. Although [kappa2-(mim(R))2]MCl2 (M = Fe, Co, Ni, Zn) are not subject to homolytic cleavage of the S-S bond because the tetravalent state is not readily accessible, the observation that [kappa2-(mimPh)2]CoCl2 and [kappa2-(mim(Bu)(t))2]CoCl2 form an equilibrium mixture with the asymmetric disulfide [kappa2-(mim(Ph))(mim(Bu)(t))]CoCl2 indicates that S-S bond cleavage via another mechanism is possible. Likewise, metathesis between disulfide and diselenide ligands is observed in the formation of [kappa2-(mim(Bu)(t))(seim(Mes))]CoCl2 upon treatment of [kappa2-(mim(Bu)(t))2]CoCl2 with [kappa2-(seim(Mes))2]CoCl2.  相似文献   

14.
The syntheses of tantalum derivatives with the potentially tridentate diamido-N-heterocyclic carbene (NHC) ligand are described. Aminolysis and alkane elimination reactions with the diamine-NHC ligands, (Ar)[NCN]H(2) (where (Ar)[NCN]H(2) = (ArNHCH(2)CH(2))(2)(C(3)N(2)); Ar = Mes, p-Tol), provided complexes with a bidentate amide-amine donor configuration. Attempts to promote coordination of the remaining pendent amine donor were unsuccessful. Metathesis reactions with the dilithiated diamido-NHC ligand ((Ar)[NCN]Li(2)) and various Cl(x)Ta(NR'(2))(5-)(x) precursors were successful and generated the desired octahedral (Ar)[NCN]TaCl(x)(NR'(2))(3-)(x) complexes. Attempts to prepare trialkyl tantalum complexes by this methodology resulted in the formation of an unusual metallaaziridine derivative. DFT calculations on model complexes show that the strained metallaaziridine ring forms because it allows the remaining substituents to adopt preferable bonding positions. The calculations predict that the lowest energy pathway involves a tantalum alkylidene intermediate, which undergoes C-H bond activation alpha to the amido to form the metallaaziridine moiety. This mechanism was confirmed by examining the distribution of deuterium atoms in an experiment between (Mes)[NCN]Li(2) and Cl(2)Ta(CD(2)Ph)(3). The single-crystal X-ray structures of (p)(-Tol)[NCNH]Ta(NMe(2))(4) (3), (Mes)[NCNH]Ta=CHPh(CH(2)Ph)(2) (4), (p)(-Tol)[NCN]Ta(NMe(2))(3) (7), (Mes)[NCCN]Ta(CH(2)(t)Bu)(2) (11), and (Mes)[NCCN]TaCl(CH(2)(t)Bu) (14) are included.  相似文献   

15.
The tris(3-tert-butyl-5-methylpyrazolyl)hydroborato zinc hydroxide complex [Tp(Bu)t(,Me)]ZnOH is protonated by (C(6)F(5))(3)B(OH(2)) to yield the aqua derivative [[Tp(Bu)t(,Me)]Zn(OH(2))][HOB(C(6)F(5))(3)], which has been structurally characterized by X-ray diffraction, thereby demonstrating that protonation results in a lengthening of the Zn-O bond by ca. 0.1 A. The protonation is reversible, and treatment of [[Tp(Bu)t(,Me)]Zn(OH(2))](+) with Et(3)N regenerates [Tp(Bu)t(,Me)]ZnOH. Consistent with the notion that the catalytic hydration of CO(2) by carbonic anhydrase requires deprotonation of the coordinated water molecule, [[Tp(Bu)t(,Me)]Zn(OH(2))](+) is inert towards CO(2), whereas [Tp(Bu)t(,Me)]ZnOH is in rapid equilibrium with the bicarbonate complex [Tp(Bu)t(,Me)]ZnOC(O)OH under comparable conditions. The cobalt hydroxide complex [Tp(Bu)t(,Me)]CoOH is likewise protonated by (C(6)F(5))(3)B(OH(2)) to yield the aqua derivative [[Tp(Bu)t(,Me)]Co(OH(2))][HOB(C(6)F(5))(3)], which is isostructural with the zinc complex. The aqua complexes [[Tp(Bu)t(,Me)]M(OH(2))][HOB(C(6)F(5))(3)] (M = Zn, Co) exhibit a hydrogen bonding interaction between the metal aqua and boron hydroxide moieties. This hydrogen bonding interaction may be viewed as analogous to that between the aqua ligand and Thr-199 at the active site of carbonic anhydrase. In addition to the structural similarities between the zinc and cobalt complexes, [Tp(Bu)t(,Me)ZnOH] and [Tp(Bu)()t(,Me)]CoOH, and between [[Tp(Bu)t(,Me)]Zn(OH(2))](+) and [[Tp(Bu)t(,Me)]Co(OH(2))](+), DFT (B3LYP) calculations demonstrate that the pK(a) value of [[Tp]Zn(OH(2))](+) is similar to that of [[Tp]Co(OH(2))](+). These similarities are in accord with the observation that Co(II) is a successful substitute for Zn(II) in carbonic anhydrase. The cobalt hydroxide [Tp(Bu)()t(,Me)]CoOH reacts with CO(2) to give the bridging carbonate complex [[Tp(Bu)t(,Me)]Co](2)(mu-eta(1),eta(2)-CO(3)). The coordination mode of the carbonate ligand in this complex, which is bidentate to one cobalt center and unidentate to the other, is in contrast to that in the zinc counterpart [[Tp(Bu)t(,Me)]Zn](2)(mu-eta(1),eta(1)-CO(3)), which bridges in a unidentate manner to both zinc centers. This difference in coordination modes concurs with the suggestion that a possible reason for the lower activity of Co(II)-carbonic anhydrase is associated with enhanced bidentate coordination of bicarbonate inhibiting its displacement.  相似文献   

16.
The photochemical reaction of (C(5)Me(5))Rh(PMe(3))H(2) (1) in neat acetonitrile leads to formation of the C-H activation product, (C(5)Me(5))Rh(PMe(3))(CH(2)CN)H (2). Thermolysis of this product in acetonitrile or benzene leads to thermal rearrangement to the C-C activation product, (C(5)Me(5))Rh(PMe(3))(CH(3))(CN) (4). Similar results were observed for the reaction of 1 with benzonitrile. The photolysis of 1 in neat benzonitrile results in C-H activation at the ortho, meta, and para positions. Thermolysis of the mixture in neat benzonitrile results in clean conversion to the C-C activation product, (C(5)Me(5))Rh(PMe(3))(C(6)H(5))(CN) (5). DFT calculations on the acetonitrile system show the barrier to C-H activation to be 4.3 kcal mol(-1) lower than the barrier to C-C activation. A high-energy intermediate was also located and found to connect the transition states leading to C-H and C-C activation. This intermediate has an agostic hydrogen interaction with the rhodium center. Reactions of acetonitrile and benzonitrile with the fragment [Tp'Rh(CNneopentyl)] show only C-H and no C-C activation. These reactions with rhodium are compared and contrasted to related reactions with [Ni(dippe)H](2), which show only C-CN bond cleavage.  相似文献   

17.
C-H bond activation was observed in a novel PCO ligand 1 (C(6)H(CH(3))(3)(CH(2)OCH(3))(CH(2)P(t-Bu)(2))) at room temperature in THF, acetone, and methanol upon reaction with the cationic rhodium precursor, [Rh(coe)(2)(solv)(n)()]BF(4) (solv = solvent; coe = cyclooctene). The products in acetone (complexes 3a and 3b) and methanol (complexes 4a and 4b) were fully characterized spectroscopically. Two products were formed in each case, namely those containing uncoordinated (3a and 4a) and coordinated (3b and 4b) methoxy arms, respectively. Upon heating of the C-H activation products in methanol at 70 degrees C, C-C bond activation takes place. Solvent evaporation under vacuum at room temperature for 3-4 days also results in C-C activation. The C-C activation product, ((CH(3))Rh(C(6)H(CH(3))(2)(CH(2)OCH(3))(CH(2)P(t-Bu)(2))BF(4)), was characterized by X-ray crystallography, which revealed a square pyramidal geometry with the BF(4)(-) anion coordinated to the metal. Comparison to the structurally similar and isoelectronic nonchelating Rh-PC complex system and computational studies provide insight into the reaction mechanism. The reaction mechanism was studied computationally by means of a two-layer ONIOM model, using both the B3LYP and mPW1K exchange-correlation functionals and a variety of basis sets. Polarization functions significantly affect relative energetics, and the mPW1K profile appears to be more reliable than its B3LYP counterpart. The calculations reveal that the electronic requirements for both C-C and C-H activation are essentially the same (14e intermediates are the key ones). On the other hand, the steric requirements differ significantly, and chelation appears to play an important role in C-C bond activation.  相似文献   

18.
The Bi(3+) (N,C,N)-pincer complex Ar'BiCl(2) (1) [Ar' = 2,6-(Me(2)NCH(2))(2)C(6)H(3)], reacts with 2 equiv of KOC(6)H(3)Me(2)-2,6 and KOC(6)H(3)(i)Pr(2)-2,6 by ionic metathesis to form the anticipated bis(aryloxide) complexes Ar'Bi(OC(6)H(3)Me(2)-2,6)(2) (2) and Ar'Bi(OC(6)H(3)(i)Pr(2)-2,6)(2) (3), respectively. However, the analogous reaction with 2 equiv of KOC(6)H(3)(t)Bu(2)-2,6 forms HOC(6)H(3)(t)Bu(2)-2,6 and a dark-orange complex containing only one aryloxide-derived ligand bound via a Bi-C and not a Bi-O linkage. This complex is formulated as Ar'Bi(C(6)H(2)(t)Bu(2)-3,5-O-4) (4), a product of para C-H bond activation. Structural, spectroscopic, and DFT studies and a comparison with the protonated analogue [Ar'Bi(C(6)H(2)(t)Bu(2)-3,5-OH-4)][BPh(4)] (5), which was obtained by treatment of 4 with [HNEt(3)][BPh(4)], suggest that 4 contains an oxyaryl dianion. Complex 4 represents a fully characterizable product of a bismuth-mediated C-H activation and rearrangement of the type postulated in catalytic SOHIO processes.  相似文献   

19.
Evidence is presented for a proposed mechanism of C-H activation of 3-methyl-3,4-dihydroquinazoline (1) by (PCy(3))(2)RhCl. One intermediate (3), a coordination complex of 1 with (PCy(3))(2)RhCl, was identified along the path to the Rh-N-heterocyclic carbene product of this reaction (2). Isotopic labeling and reaction-rate studies were used to demonstrate that C-H activation takes place intramolecularly on the reaction coordinate between 3 and 2. Computational studies corroborate the proposed mechanism and suggest that the rate-limiting step is oxidative addition of the C-H bond to the metal center. The consequences of this mechanism for coupling reactions of N-heterocycles that occur via Rh-catalyzed C-H bond activation are discussed.  相似文献   

20.
Selective vibrational excitation controls the competition between C-H and C-D bond cleavage in the reaction of CH(3)D with Cl, which forms either HCl + CH(2)D or DCl + CH(3). The reaction of CH(3)D molecules with the first overtone of the C-D stretch (2nu(2)) excited selectively breaks the C-D bond, producing CH(3) exclusively. In contrast, excitation of either the symmetric C-H stretch (nu(1)), the antisymmetric C-H stretch (nu(4)), or a combination of antisymmetric stretch and CH(3) umbrella bend (nu(4) + nu(3)) causes the reaction to cleave only a C-H bond to produce solely CH(2)D. Initial preparation of C-H stretching vibrations with different couplings to the reaction coordinate changes the rate of the H-atom abstraction reaction. Excitation of the symmetric C-H stretch (nu(1)) of CH(3)D accelerates the H-atom abstraction reaction 7 times more than excitation of the antisymmetric C-H stretch (nu(4)) even though the two lie within 80 cm(-1) of the same energy. Ab initio calculations and a simple theoretical model help identify the dynamics behind the observed mode selectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号