首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of high-intensity femtosecond laser pulses (100–200 fs) in the near (0.8–1.8 μm) and medium (4.6–5.8 μm) IR ranges on the CF2HCl, CF3H, (CF3)2C=C=O, and C4F9COI molecules is examined. Irradiation of CF2HCl and CF3H molecules by 0.8-to 1.8-μm laser pulses with intensities of >40 TW/cm2 (>4 × 1013 W/cm2) makes them dissociate to yield CF3H and CF4, respectively. The key mechanism of the dissociation of these molecules is field ionization and fragmentation. The excitation of the stretching vibrations of the C=O bond in the (CF3)2C=C=O and C4F9COI molecules by 4.5-to 5.8-μm femtosecond pulses produced no detectable dissociation up to a fluence of ∼0.5 J/cm2 (or a intensity of ∼2.5 TW/cm2). Probable explanations of this observation are discussed. Original Russian Text ? V.M. Apatin, V.O. Kompanets, V.B. Laptev, Yu.A. Matveets, E.A. Ryabov, S.V. Chekalin, V.S. Letokhov, 2007, published in Khimicheskaya Fizika, 2007, Vol. 26, No. 4, pp. 18–25.  相似文献   

2.
《Solid State Ionics》2006,177(26-32):2385-2390
Presented here is a first principles based molecular modeling investigation of the effects of conformational changes in the backbone on hydration and proton transfer in the short-side-chain perfluorosulfonic acid fuel cell membrane under minimal hydration conditions. Extensive searches for minimum energy structures (at the B3LYP/6-311G⁎⁎ level) of the two pendant side chain polymeric fragment: CF3CF(–O(CF2)2SO3H)–(CF2)7–CF(–O(CF2)2SO3H)CF3 with from 4 to 7 explicit water molecules revealed that the perfluorocarbon backbone may adopt both an elongated geometry with all carbons in a trans configuration and also a folded conformation as a result of the hydrogen bonding of the terminal sulfonic acids with the water. Our calculations show that the fragments displaying the latter ‘kinked’ backbone possessed stronger binding of the water to the sulfonic acid groups and also effect proton dissociation with fewer water molecules. These calculations point to the importance of the flexibility of the backbone in the transport of protons for membranes with low water content.  相似文献   

3.
The singlet and triplet potential energy surfaces for the reactions CF3O2 + I (1), CF3O + OI (2) and CF3 + OIO (3) are investigated using ab initio quantum mechanical methods. Four important isomeric energy minima were found, three on the singlet surface, CF3OOI, CF3OIO and CF3IO2 and one on the triplet surface 3CF3OIO. CF2O + FOI are shown to be the most probable products for all reactions, CF3O +I and CF3O + O(3P) are possible for reactions (2) and (3) while the reaction pathway leading to CF3O +OI is also possible for reaction (3).  相似文献   

4.
The basicity of a series of sulfonamides and carboxamides with respect to protonation and hydrogen‐bonded complex formation with phenol was investigated by calculations using the Becke three‐parameter hybrid functional combined with Lee–Yang–Parr correlation functional with the 6‐311G** and 6‐311++G** basis sets and by infrared spectroscopy. The effect of fluorinated substituent was studied for the two series. The proton affinity of nitrogen in sulfonamides is higher than oxygen, in contrast to carboxamides, which are protonated at oxygen. The phenyl group in benzenesulfonamide increases the basicity of both heteroatoms, but more strongly of the nitrogen, whereas in benzamide the effect on the two heteroatoms is about the same. The CF3 group equally decreases the basicity of nitrogen and oxygen atoms in sulfonamides and carboxamides. The second fluorinated substituent decreases the basicity of oxygen in (CF3CO)2NH more strongly than of nitrogen. For sulfonamides, the same effect results in the reverse of the center of basicity from nitrogen in (MeSO2)2NH to oxygen in (CF3SO2)2NH. All studied carboxamides give H‐complexes via the carbonyl oxygen, whereas for sulfonamides two types of H‐complexes, with the OH···N and OH···O=S, were found theoretically, the latter being more stable. The exception is bisimide (CF3SO2)2NH, for which only the OH···O=S complex is stable. Experimentally, only the oxygen‐bound complexes are observed. Analysis of the natural charges revealed an ‘abnormal’ increase of the electron density on the NH group by electron‐acceptor substituents in CF3SO2NHR, which was explained using the natural bond orbital analysis by loosening of the S–N bond because of orbital interactions with the σ*S?N orbital. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
The composition and structure of complexes that formed in aqueous solutions of trifluoroacetic acid were studied by frustrated multiple total internal reflection IR spectroscopy (FMTIR). Two types of complexes with a molecular structure formed: trimers CF3COOH · (H2O)2 and cyclic tetramers (CF3COOH)2 · (H2O)2, in which the molecules of the components are arranged in pairs. In the range of acid concentrations from 100% to [H2O]/[CF3COOH] = 1: 1, only these tetramers formed, and all added water was bound into these hydrates. In more dilute solutions (up to [H2O]/[CF3COOH] = 2: 1), CF3COOH · (H2O)2 complexes formed along with tetramers; at a double excess of H2O, the components of the solution were completely bound into these trimers. In dilute solutions (from 0 to 3.6 M CF3COOH), the acid is completely dissociated into H5O 2 + and CF3COO ions hydrated with water molecules. In the range of medium concentrations (from 3.6 M to [H2O]/[CF3COOH] = 2: 1), the solutions contain both these ions and CF3COOH · (H2O)2 dihydrates. For this range of compositions of the CF3COOH?H2O system, the concentrations of H5O 2 + ions and CF3COOH · (H2O)2 dihydrates were calculated.  相似文献   

6.
The 18O-selective IR MPD of perfluorodimethyl ether (CF3)2O has been studied. The dissociation yields of (CF3)2 18O (18) and (CF3)2 16O (16) and the isotope selectivity (18/16) have been measured as functions of TEA CO2-laser frequency, laser fluence and ether parent pressure. The (CF3)2O molecule has been found to provide highly efficient 18O separation. The MPD yield of the desired isotope 18O varies in the range 3–13%; the selectivity (18/16) achieves a value of 95 at the laser line 10P22, at moderate fluence Ø=4 J/cm2 and at P (CF 3)2 O=0.5 Torr.  相似文献   

7.
Thermal chemical vapor deposition of fluorinated carbon thin films in the polymeric form is described by hot filament decomposition of the gaseous C3F6O precursor. Decomposition at filament temperatures, ≤450 °C produces films in the ordered (CF2)2n polymeric chain structure as in a tetrafluoroethylene polymer. A composite of (CF2)2n chains structure and crosslinked m(C:Fx)n phases are formed in films deposited at filament temperature ≥600 °C. Polymerization of :CF2 radicals results in (CF2)2n chain structure and the crosslinked phase emerges from a separate process involving reaction among the CF3, CFO and CF3CO radicals and including CF2. Substrate temperature affects both the C-to-F bonding configuration and the relative ratio of the composite phases. Dominant C–CF bonding structure in the low (<-5 °C) substrate temperature films is thermally less stable compared to the C–F structure, which dominates the crosslinked structure in films deposited at high (∼70 °C) substrate temperatures. Dielectric properties of the composite films are studied using the electrical equivalent model and a correlation with the C-to-F bond structure is established. High polymeric (CF2)2n phase determines the electrical impedance and the dielectric constant of the film, and the crosslinked phase imparts structural stability. PACS 81.15.Gh; 73.61.Ph; 77.84.Jd; 79.60.Fr  相似文献   

8.
Ab initio quantum-chemical calculations of the (CF3CO2H2+3O2) and (CF3CO23O2) complexes were performed by the MP2 method. It was found that these complexes were characterized by low complex formation energies, of 2.97 and 1.72 kcal/mol, respectively. According to the MP2(full)/6-311++G(d, p) calculation data, the bridge stabilization of oxygen by linking with both the CF3CO2H2+ cation and CF3CO2 anion is much more favorable energetically. A study of the potential energy surface of the joint molecular system (CF3CO2H2+3O2…CF3CO2) shows that proton experiences activationless transfer from the cation to the 3O2 molecule accompanied by electron transfer from the CF3COO anion. An analysis of spin density distribution shows that two radicals are stabilized in the (CF3CO2….OOH….O=C(OH)CF3) complex in the triplet state observed on the potential energy surface.  相似文献   

9.
A new working molecule 1,1,1,3,3,3-hexafluoro-2-(trifluoromethyl)-propane-2-t (CF3)3CT, is reported for the isotope separation of tritium by TEA CO2-laser-induced multiphoton dissociation (MPD). Selective and efficient dissociation of (CF3)3CT was observed by irradiation at about 980 cm–1 where (CF3)3CH was nearly transparent. The critical fluence for dissociation of (CF3)3CT at 10R(28) 980.9 cm–1 was estimated to be as low as 4.6 J/cm2, which is the lowest of the tritiated halocarbons that we have ever reported. A detailed study was made of the pressure dependence of the dissociation rate constants for (CF3)3CT and (CF3)3CH to clarify the collisional effects in their MPD. The hydrogen isotope exchange between (CF3)3CH and HTO was found to be extremely rapid, which is advantageous in the practical laser separation cycle for tritium removal from water.  相似文献   

10.
Detailed experimental investigations are reported of the parameters of lasing on the transition2P1/22P3/2, λ = 1.3 μm of atomic iodine upon photodissociation of the molecules (CF3)2AsI and (CF3)2PI. The light source was an IFP-5000 flash lamp. The experimental data are used to determine the sequence of the basic reactions that accompany the photolysis of the molecules (CF3)2AsI and (CF3)2PI and to determine the energy parameters of the generated radiation.  相似文献   

11.
The concentration dependence of the shape of absorption bands in the spectrum of CF4 in liquid argon is studied in the concentration range (0.01–17)×10?3 molar fractions at 93 K. In all spectral regions related to ν3, the shape of the spectral function is determined, along with the Fermi resonance 〈νi3+1,ν4|≈〈νi34+2|, by the resonance dipole-dipole interaction. In the spectral region of the Fermi doublet ν 13≈ ν1+2ν4, the spectrum of the contact (CF4)2 dimer is identified. Agreement between this spectrum and the calculated spectrum is achieved by simultaneously taking intramolecular and intermolecular resonances into account. The distance R C-C in the dimer is 4.85(15) Å. The calculations of the spectra of (12CF4)2 and (13CF4?12CF4) dimers with this value of R C-C in the region ν 3≈2ν4 agree with the experiment.  相似文献   

12.
M. Vinodha 《Molecular physics》2018,116(9):1145-1152
The structure–activity relationship of fused π-conjugated imidazolium cation with three counter anion molecules, BF4?, CF3SO3? and (CF3SO2)2N?, was studied using electronic structure calculations. The structural, opto-electronic and charge transport properties of these complexes were studied. The charge transfer from π-conjugated imidazolium(I) to counter anion was confirmed in all the studied complexes. Interaction energy varies significantly depending on the counter anion and the stability was found higher for I-BF4 complex than both I–CF3SO3 and I–(CF3SO2)2N complexes. The strong (C–H)+···F? hydrogen bond of length 1.95 Å between fused π-conjugated imidazolium and BF?4 anion is the driving force for the strongest interaction energy in I–BF4 complex. The energy decomposition analysis confirms that the interaction between imidazolium and counter anion is mainly driven by electrostatic and orbital interaction. It has been observed that the absorption spectra of the complex are independent of anion nature but the influence of anion character is observed on frontier molecular orbital pattern. The charge transport property of I–BF4 complex was studied by using tight-binding Hamiltonian approach and found that the hole mobility in I–BF4 is 1.13 × 10?4 cm2 V?1 s?1.  相似文献   

13.
The information related with the mechanism of reactions (CF3)2CHOCH2F + OH (R1) and (CF3)2CHOCHF2 + OH (R2) was explored theoretically at the BMC-CCSD//BMK/6-311 + G(d,p) level. Based on the optimised structures, energies, and other information, the rate constants were evaluated by the canonical variational transition-state theory with small curvature tunneling contributions in a temperature range of 220–2000 K. For each reaction, there are both hydrogen-abstraction and displacement channels. In addition, more than one hydrogen atom can be abstracted. The relationship between hydrogen abstraction and displacement, between different hydrogen-abstraction channels, and between reactions R1 and R2 are elucidated.  相似文献   

14.
Peaks of C60(CF3) n 2? doubly charged negative ions (n = 6–12) have been observed in the mass spectra of the resonance electron capture by trifluoromethylfullerene C60(CF3)12 molecules. It has been established that these ions are formed owing to the attachment of two free isoenergetic electrons. The autodetachment of an extra electron has been detected for the doubly charged molecular ions (n = 12). It has been established from the observation of the delayed fragmentation of the most abundant ions with n = 8 and 10 that the doubly charged negative ions, like their singly charged analogs, are metastable with respect to the separation of the CF3 fragment(s). The yield of doubly charged negative ions has been obtained as a function of the electron energy. By comparing them with the analogous dependences for the singly charged ions, the specific features have been revealed which were associated with the presence of the repulsive Coulomb barrier and the regular effect of the doubled energy of two additional electrons on the energy dependence of the dissociative decay of the doubly charged negative ions. The absolute cross section for the formation of the C60(CF3) 10 2? ions has been measured. At the energy of their yield maximum near the 5 eV, it is ~1 × 10?19 cm2.  相似文献   

15.
The dynamics of relaxation processes in free bis(trifluoromethyl)ketene (CF3)2CCO and Fe(CO)5 and Cr(CO)6 metal carbonyl molecules after multiphonon excitation of the C=C=O and C=O vibrations by femtosecond laser infrared radiation was studied. The temporal and spectral dependences of the relaxation of the excited vibrational states were measured. Kinetics with a characteristic decay time of about 5 ps was obtained for (CF3)2CCO molecules. Its behavior is interpreted as a manifestation of the intramolecular relaxation of the excited vibration states of the resonance mode. Kinetic curves with characteristic times of about 250–500 fs were observed for Fe(CO)5 and Cr(CO)6. The behavior of these curves depends on the mutual orientation of the polarizations of the pump and probe pulses.  相似文献   

16.
The geometry structures, electronic structures, absorption and phosphorescent properties of four Ir(III) complexes {[(F2-ppy)2Ir(pta-X)], where F2-ppy = (2,4-difluoro)phenylpyridine; pta = pyridine-1,2,4-triazole; X = –CF3; –H; –CH3; –N(CH3)2}, are investigated using the density functional method. The results reveal that the electron-accepting group –CF3 has no obvious effect on absorption and emission properties, while the substitutive group –N(CH3)2 with strong electron-donating ability has obvious effect on the emission properties. The mobility of hole and electron were studied computationally based on the Marcus–Hush theory. Calculations of ionisation potential and electron affinity were used to evaluate the injection abilities of holes and electrons into these complexes. We hope that this theoretical work can provide a suitable guide to the future design and synthesis of novel phosphorescent materials for use in the organic light-emitting diodes.  相似文献   

17.
The interaction within the methane–methane (CH4/CH4), perfluoromethane–perfluoromethane (CF4/CF4) methane–perfluoromethane dimers (CH4/CF4) was calculated using the Hartree–Fock (HF) method, multiple orders of Møller–Plesset perturbation theory [MP2, MP3, MP4(DQ), MP4(SDQ), MP4(SDTQ)], and coupled cluster theory [CCSD, CCSD(T)], as well as the PW91, B97D, and M06-2X density functional theory (DFT) functionals. The basis sets of Dunning and coworkers (aug-cc-pVxZ, x?=?D, T, Q), Krishnan and coworkers [6-311++G(d,p), 6-311++G(2d,2p)], and Tsuzuki and coworkers [aug(df, pd)-6-311G(d,p)] were used. Basis set superposition error (BSSE) was corrected via the counterpoise method in all cases. Interaction energies obtained with the MP2 method do not fit with the experimental finding that the methane–perfluoromethane system phase separates at 94.5?K. It was not until the CCSD(T) method was considered that the interaction energy of the methane–perfluoromethane dimer (?0.69?kcal?mol?1) was found to be intermediate between the methane (?0.51?kcal?mol?1) and perfluoromethane (?0.78?kcal?mol?1) dimers. This suggests that a perfluoromethane molecule interacts preferentially with another perfluoromethane (by about 0.09?kcal?mol?1) than with a methane molecule. At temperatures much lower than the CH4/CF4 critical solution temperature of 94.5?K, this energy difference becomes significant and leads perfluoromethane molecules to associate with themselves, forming a phase separation. The DFT functionals yielded erratic results for the three dimers. Further development of DFT is needed in order to model dispersion interactions in hydrocarbon/perfluorocarbon systems.  相似文献   

18.
Serdyukov  V. I.  Sinitsa  L. N.  Lugovskoi  A. A. 《JETP Letters》2019,109(9):575-577

Spectroscopic studies of pure carbon tetrafluoride and carbon tetrafluoride in the presence of water vapor have been carried out. Studies have revealed changes in the absorption spectrum of the 1280 cm‒1 band of CF4, indicating the formation of new molecules, CF4–H2O hydrates. The bond between CF4 and H2O is not chemical in nature. The formation of these molecules can accelerate the removal of carbon tetrafluoride from the atmosphere with precipitation in the form of rain or snow.

  相似文献   

19.
《Optics Communications》1986,59(4):259-262
Kinetics of the decomposition of CF3Br at 20 torr by a cw CO2 laser have been studied over the range of laser frequencies 1043–1085 cm-1. At constant translational temperature the change in the rate constant with laser frequency over the frequency range is a factor of 500, comparable to the effect previously observed in CF2ClCF2Cl and CF3CF2Cl. Arrhenius plots show an activation energy of 64.9 kcal/mole, independent of frequency. The laser induced optical absorption of CF3Br exhibits a hysteresis effect at the lower laser frequencies.  相似文献   

20.
Two siloxane-based di-urethanesil frameworks incorporating poly(oxyethylene) (POE) chains have been synthesized by the sol–gel process and doped with magnesium triflate (Mg(CF3SO3)2) with the goal of developing electrolytes for the fabrication of solid-state rechargeable magnesium batteries. In these matrices, short POE chains are covalently bonded to the siloxane network via urethane linkages. The xerogels have been represented by the notation d-Ut(Y) n Mg(CF3SO3)2, where Y?=?300 and 600 represents the average molecular weight of the POE chains and n stands for salt composition (molar ratio of OCH2CH2 units per Mg2+). Xerogels with compositions ranging from 2?≤?n?<?∞ were prepared. A crystalline POE/Mg(CF3SO3)2 complex of unknown stoichiometry is formed in the d-Ut(300) n Mg(CF3SO3)2 materials with n?≤?6 and in the d-Ut(600) n Mg(CF3SO3)2 materials with n?≤?5. The organically modified silicate electrolytes with the highest conductivity of the d-Ut(300) n Mg(CF3SO3)2 and d-Ut(600) n Mg(CF3SO3)2 series are the samples with n?=?6 (3.9?×?10?8 S cm?1 at 26 °C and 8.7?×?10?5 S cm?1 at 97 °C) and n?=?100 (2.63?×?10?7 S cm?1 at 20 °C and 1.4?×?10?5 S cm?1 at 85 °C), respectively. Since the electrolytes for Mg batteries that have been proposed up to now have many intrinsic problems and although the room temperature conductivity values exhibited by the systems developed in the present study are still low in view of practical application, this work opens new directions for the development of solid-state Mg ion electrolytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号