首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
本文采用密度泛函理论(DFT)中的局域密度近似(LDA)方法对硼(B)掺杂富勒烯(C_(35)B)储氢问题在前人的基础上做了进一步研究,结果表明被C_(35)B吸附的氢分子很容易解离,经历从物理吸附到化学吸附的转变,并且发现解离产物C_(34)BHCH有分子内氢转移反应发生,这时B原子仍能与氢分子有很强的相互作用,最终导致B位置以及与B最邻近的三个C原子上都有氢原子吸附.并利用过渡态理论从热力学上分析了这种反应的发生趋势.  相似文献   

2.
顾珊珊  胡晓君  黄凯 《物理学报》2013,62(11):118101-118101
采用热丝化学气相沉积法制备硼掺杂纳米金刚石 (BDND) 薄膜, 并对薄膜进行真空退火处理, 系统研究退火温度对BDND薄膜微结构和电学性能的影响. Hall效应测试结果表明掺B浓度为5000 ppm (NHB) 的样品的电阻率较掺B浓度为500 ppm (NLB) 的样品的低, 载流子浓度高, Hall迁移率下降. 1000 ℃退火后, NLB和NHB 样品的迁移率分别为53.3和39.3 cm2·V-1·s-1, 薄膜的迁移率较未退火样品提高, 电阻率降低. 高分辨透射电镜、紫外和可见光拉曼光谱测试结果表明, NLB样品的金刚石相含量较NHB样品高, 高的硼掺杂浓度使薄膜中的金刚石晶粒产生较大的晶格畸变. 经1000 ℃退火后, NLB和NHB薄膜中纳米金刚石相含量较未退火时增大, 说明薄膜中部分非晶碳转变为金刚石相, 为晶界上B扩散到纳米金刚石晶粒中提供了机会, 使得纳米金刚石晶粒中B浓度提高, 增强纳米金刚石晶粒的导电能力, 提高薄膜电学性能. 1000 ℃退火能够恢复纳米金刚石晶粒的晶格完整性, 减小由掺杂引起的内应力, 从而提高薄膜的电学性能. 可见光Raman光谱测试结果表明, 1000℃退火后, Raman谱图中反式聚乙炔 (TPA) 的1140 cm-1峰消失, 此时薄膜电学性能较好, 说明TPA减少有利于提高薄膜的电学性能. 退火后金刚石相含量的增大、金刚石晶粒的完整性提高及TPA含量的大量减少有利于提高薄膜的电学性能. 关键词: 硼掺杂纳米金刚石薄膜 退火 微结构 电学性能  相似文献   

3.
Epitaxial boron-doped diamond films were grown by microwave plasma chemical vapor deposition for application as heating elements in high pressure diamond anvil cell devices. To a mixture of hydrogen, methane and oxygen, diborane concentrations of 240–1200 parts per million were added to prepare five diamond thin-film samples. Surface morphology has been observed to change depending on the amount of diborane added to the feed gas mixture. Single-crystal diamond film with a lowest room temperature resistivity of 18 mΩ cm was fabricated and temperature variation of resistivity was studied to a low temperature of 12 K. The observed minima in resistivity values with temperature for these samples have been attributed to a change in conduction mechanism from band conduction to hopping conduction. We also present a novel fabrication methodology for monocrystalline electrically conducting channels in diamond and present preliminary heating data with a boron-doped designer diamond anvil to 620 K at ambient pressure.  相似文献   

4.
潘金平  胡晓君  陆利平  印迟 《物理学报》2010,59(10):7410-7416
采用热丝化学气相沉积法制备B掺杂纳米金刚石薄膜,并对薄膜进行真空退火处理,系统研究了不同退火温度对B掺杂纳米金刚石薄膜的微结构和电化学性能的影响.结果表明,当退火温度升高到800 ℃后,薄膜的Raman谱图中由未退火时在1157,1346,1470,1555 cm-1处的4个峰转变为只有D峰和G峰,说明晶界上的氢大量解吸附量减少,并且D峰和G峰的积分强度比ID/IG值变为最小,即sp2相团簇  相似文献   

5.
高硼掺杂金刚石膜电极的电化学应用研究   总被引:1,自引:0,他引:1  
胡陈果 《物理》2002,31(2):93-97
概述了高硼掺杂金刚石膜电极的电化学研究的最新进展,介绍了高硼掺杂金刚石膜电极的制备,金刚石膜电极在水介质中的电化学行为,金刚石膜电极在废水处理,微量有机化合物成分探测和蜂窝状金刚石电极双电层电容器方面的应用。  相似文献   

6.
Microcrystalline boron-doped diamond (BDD) films are synthesized on the silicon substrate by the hot-filament chemical vapor deposition method under the gas mixture of hydrogen and methane in the presence of boron carbide (B4C) placed in front of filaments. The observed results of scanning electron microscopy, Raman spectroscopy and X-ray diffraction show the morphologies. Microstructures for various deposition pressures of as-grown diamond films are found to be dependent on the change of deposition pressure. These results reveal that with the increase of deposition pressure, resistivity decreases and increase in the grain size is noted in the presence of B4C. Resistivity shows a sudden fall of about three orders of magnitude by the addition of boron in the diamond films. This is due to the crystal integrity induced by B-atoms in the structure of diamond in the presence of B4C. These results are also significant for the conventional applications of BDD materials. The effects of deposition pressure on the overall films morphology and the doping level dependence of the diamond films have also been discussed.  相似文献   

7.
In this paper, we investigate the reaction pressure-dependent growth and properties of boron-doped freestanding diamond films, synthesized by hot filament chemical vapor deposition (HFCVD) at different boron-doping levels. With the decrease in pressure, the growth feature of the films varies from mixed [1 1 1] and [1 1 0] to dominated [1 1 1] texture. The low reaction pressure, as well as high boron-doping level, results in the increase (decrease) of carrier concentration (resistivity). The high concentration of atomic hydrogen in the ambient and preferable [1 1 1] growth, due to the low reaction pressure, is available for the enhancement of boron doping. The estimated residual stress increases with increase in the introducing boron level.  相似文献   

8.
We have deposited diamond-like carbon (DLC) films by radio-frequency magnetron sputtering, and have annealed the films under various conditions to investigate the effects of annealing on the structural properties by visible Raman spectroscopy, X-ray photoelectron spectroscopy and atomic force microscopy. The structural ordering of hydrogenated DLC films occurs during annealing below 400 °C in a vacuum and a hydrogen gas atmosphere, while unhydrogenated DLC films are not ordered during annealing even at 700 °C. On the other hand, the ordering and the decrease of the sp3 content are observed for both the films after annealing under an atomic hydrogen exposure. The ordering progresses as the annealing temperature and time are increased. The reduction of the film thickness after annealing is suppressed with increasing annealing temperature. The results suggest that both the preferential etching by atomic hydrogen and the hydrogen evolution encourage the structural changes under an atomic hydrogen exposure.  相似文献   

9.
《中国物理 B》2021,30(9):96803-096803
Hill-like polycrystalline diamond grains(HPDGs) randomly emerged on a heavy boron-doped p~+ single-crystal diamond(SCD) film by prolonging the growth duration of the chemical vapor deposition process.The Raman spectral results confirm that a relatively higher boron concentration(~1.1 × 10~(21) cm~(-3)) is detected on the HPDG with respect to the SCD region(~5.4 × 10~(20) cm~(-3)).It demonstrates that the Au/SCD interface can be modulated from ohmic to Schottky contact by varying the surface from hydrogen to oxygen termination.The current-voltage curve between two HPDGs is nearly linear with either oxygen or hydrogen termination,which means that the HPDGs provide a leakage path to form an ohmic contact.There are obvious rectification characteristics between oxygen-terminated HPDGs and SCD based on the difference in boron doping levels in those regions.The results reveal that the highly boron-doped HPDGs grown in SCD can be adopted as ohmic electrodes for Hall measurement and electronic devices.  相似文献   

10.
We exposed a freshly deposited boron-doped, hydrogenated amorphous silicon (a-Si:H) layer to hydrogen plasma under conditions of chemical transport. In situ spectroscopic ellipsometry measurements revealed that atomic hydrogen impinging on the film surface behaves differently before and after crystallization. First, the plasma exposure increases hydrogen solubility in the a-Si:H network leading to the formation of a hydrogen-rich subsurface layer. Then, once the crystallization process engages, the excess hydrogen starts to leave the sample. We have attributed this unusual evolution of the excess hydrogen to the grown hydrogenated microcrystalline (μc-Si:H) layer, which gradually prevents the atomic hydrogen from the plasma reaching the μc-Si:H/a-Si:H interface. Consequently, hydrogen solubility, initially increased by the hydrogen plasma, recovers the initial value of an untreated a-Si:H material. To support the theory that the outdiffusion is a consequence and not the cause of the μc-Si:H layer growth, we solved the combined diffusion and trapping equations, which govern hydrogen diffusion into the sample, using appropriate approximations and a specific boundary condition explaining the lack of hydrogen injection during μc-Si:H layer growth.  相似文献   

11.
We report on electrical measurements and structural characterization performed on boron-doped diamond-like carbon thin films deposited by femtosecond pulsed laser deposition. The resistance has been measured between 77 and 300 K using four probe technique on platinum contacts for different boron doping. Different behaviours of the resistance versus temperature have been evidenced between pure DLC and boron-doped DLC. The a-C:B thin film resistances exhibit Mott variable range hopping signature with temperature. Potential applications of DLC thin films to highly sensitive resistive thermometry is going to be discussed.  相似文献   

12.
Hydrogen interaction with defects in thin niobium (Nb) films was investigated using slow positron implantation spectroscopy (SPIS) combined with X-ray diffraction (XRD) and transmission electron microscopy (TEM). Thin Nb films on Si substrates were prepared using cathode beam sputtering at room temperature. Initially, the microstructure of the virgin (hydrogen-free) films was characterized. Subsequently, the films were step-by-step electrochemically charged with hydrogen and the evolution of the microstructure with increasing hydrogen concentration was monitored. Hydrogen loading leads to a significant lattice expansion which was measured by XRD. Contrary to free-standing bulk metals, thin films are highly anisotropic. The in-plane expansion is prevented because the films are clamped on the elastically hard substrate. On the other hand, the out-of-plane expansion is substantially higher than in the bulk samples. Moreover, an enhanced hydrogen solubility in the α-phase was found in nanocrystalline Nb films. It was found that most of positrons in the films are trapped at open-volume defects at grain boundaries (GBs). These defects represent trapping sites also for hydrogen atoms. Hydrogen trapping at vacancy-like defects like GBs leads to a local increase of the electron density and is reflected by a pronounced decrease of the S parameter in the hydrogen-loaded samples. In addition, it was found that new defects are introduced at higher concentrations of hydrogen due to the formation of NbH (β-phase) particles.  相似文献   

13.
Raman spectroscopy is employed for studying silicon nanocrystal arrays in boron-doped amorphous silicon films. The nanocrystals were formed in the initial amorphous films by the pulsed impact of an excimer laser. The electron-phonon interaction effects are observed experimentally in the heterostructure formed by a silicon nanocrystal and an amorphous matrix. These effects can be described in the framework of the familiar Fano interference model.  相似文献   

14.
利用磁控溅射在重掺硼硅(p+-Si)衬底上分别沉积TiO2薄膜和掺硼的TiO2(Ti O2∶B)薄膜,并经过氧气氛下600℃热处理,由此形成相应的TiO2/p+-Si和TiO2∶B/p+-Si异质结。与Ti O2/p+-Si异质结器件相比,TiO2∶B/p+-Si异质结器件的电致发光有明显的增强。分析认为:TiO2∶B薄膜经过热处理后,B原子进入TiO2晶格的间隙位,引入了额外的氧空位,而氧空位是TiO2/p+-Si异质结器件电致发光的发光中心,所以上述由B掺杂引起的氧空位浓度的增加是TiO2∶B/p+-Si异质结器件电致发光增强的原因。  相似文献   

15.
Dong-Yang Liu 《中国物理 B》2022,31(12):128104-128104
Regulation of oxygen on properties of moderately boron-doped diamond films is fully investigated. Results show that, with adding a small amount of oxygen (oxygen-to-carbon ratio < 5.0%), the crystal quality of diamond is improved, and a suppression effect of residual nitrogen is observed. With increasing ratio of O/C from 2.5% to 20.0%, the hole concentration is firstly increased then reduced. This change of hole concentration is also explained. Moreover, the results of Hall effect measurement with temperatures from 300 K to 825 K show that, with adding a small amount of oxygen, boron and oxygen complex structures (especially B3O and B4O) are formed and exhibit as shallow donor in diamond, which results in increase of donor concentration. With further increase of ratio of O/C, the inhibitory behaviors of oxygen on boron leads to decrease of acceptor concentration (the optical emission spectroscopy has shown that it is decreased with ratio of O/C more than 10.0%). This work demonstrates that oxygen-doping induced increasement of the crystalline and surface quality could be restored by the co-doping with oxygen. The technique could achieve boron-doped diamond films with both high quality and acceptable hole concentration, which is applicable to electronic level of usage.  相似文献   

16.
We study the adsorption of the molecular hydrogen on boron-doped polypyrrole ((–C4BH3)n) using first-principles density functional calculations. We find that the binding energy of H2 molecules is slightly reduced to 0.39 eV/H2 from 0.51 eV/H2 as the number of adsorbed H2 molecules increases. This is in sharp contrast to the case of boron-doped fullerenes where the binding energy is drastically reduced as the number of adsorbed H2 molecules increases. We find that the enhancement of H2 adsorption is due to a local charge transfer by H2 adsorption in the B-doped polypyrrole as opposed to a delocalized charge transfer in the B-doped fullerenes. Our finding shows that B-doped carbon systems could be utilized for room temperature hydrogen storage.  相似文献   

17.
郭艳青  黄锐  宋捷  王祥  宋超  张奕雄 《中国物理 B》2012,21(6):66106-066106
Amorphous-layer-free nanocrystalline silicon films were prepared by a very high frequency plasma enhanced chemical vapor deposition(PECVD) technique using hydrogen-diluted SiH4 at 250 C.The dependence of the crystallinity of the film on the hydrogen dilution ratio and the film thickness was investigated.Raman spectra show that the thickness of the initial amorphous incubation layer on silicon oxide gradually decreases with increasing hydrogen dilution ratio.High-resolution transmission electron microscopy reveals that the initial amorphous incubation layer can be completely eliminated at a hydrogen dilution ratio of 98%,which is lower than that needed for the growth of amorphous-layer-free nanocrystalline silicon using an excitation frequency of 13.56 MHz.More studies on the microstructure evolution of the initial amorphous incubation layer with hydrogen dilution ratios were performed using Fourier-transform infrared spectroscopy.It is suggested that the high hydrogen dilution,as well as the higher plasma excitation frequency,plays an important role in the formation of amorphous-layer-free nanocrystalline silicon films.  相似文献   

18.
Chemically robust conductive p-type boron-doped diamond(BDD) films are an important electrode material and have been widely applied in electrochemistry.In this study,BDD films are taken as a two-dimensional(2D)electrode in a electrophoresis tank system instead of the conventional one-dimensional platinum wire electrode.The theoretical simulations by finite element numerical analysis reveal that the 2D BDD electrodes have relatively high intensity and uniformity of electric field in the tank.Experimentally,the 2D BDD electrodes with smaller size show excellent properties for the separation of DNA fragments.The advantages of the 2D BDD electrodes with chemical inertness,sustainability,high intensity and uniformity electronic field,as well as reduced small size of electrophoresis tank would open a possibility for realizing new generation,high-performance biological devices.  相似文献   

19.
刘世祥  朱美芳 《发光学报》1998,19(3):212-215
使用除氢、高温成核和低温生长的三段式快速热处理方法,将常规方法制备的氢化非晶硅(a-SiH)薄膜晶化成纳米硅(nc-Si)薄膜。该薄膜在波长为457.9nm的Ar+激光的激发下,在室温发射出蓝绿光。  相似文献   

20.
利用磁控溅射法以不同条件在重掺硼硅片(p+-Si)上制备Ti薄膜,经过一定条件下的热氧化转化为TiO2薄膜,从而形成TiO2/p+-Si异质结.研究表明:要使TiO2/p+-Si异质结产生显著的电致发光,其中的TiO2薄膜必须呈现单一的锐钛矿相,这就要求在较低的功率下溅射获得晶粒尺寸较小的Ti薄膜.此外,TiO2的薄膜...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号