首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study focuses on gas-phase polymerization of ethylene using the titanium-based Ziegler–Natta catalysts prepared from different magnesium sources including MgCl2 (Cat A), magnesium powder (Cat B), and Mg(OEt)2 (Cat C). During polymerization, different cocatalysts were also used. It was found that Cat C with triethylaluminum as a cocatalyst exhibited the highest activity. This was likely attributed to optimal distribution of active sites on the catalyst surface. It can be observed by increased temperature in the reactor due to highly exothermic reaction during polymerization. By the way, the morphologies of the polymer obtained from this catalyst were spherical, which is more preferable. Besides the catalytic activity, crystallinity and morphology were also affected by the different magnesium sources used to prepare the catalysts.  相似文献   

2.
研究了由两种α-二亚胺镍催化剂[Cat1:α-萘基-丁二亚胺二溴化镍,Cat2:2,6-二异丙基苯基苊二亚胺二溴化镍]组成的复式镍催化剂在MAO活化下催化单一乙烯聚合.可制备得到支化度高达上百个支链(每1000个碳),长支链的比例占到30%左右的聚乙烯.13C-NMR、GPC、DSC、WAXD、DMA结果表明此复式催化剂催化乙烯聚合可得到分子量较高、分子量分布较窄的长支链聚乙烯弹性体.在合适的条件下,此复式催化体系还具有促进提高催化活性的良好协同作用,其聚合活性比两种单一催化剂都高(4·6×105g PE/mol Ni·h).  相似文献   

3.
Three kinds of MgCl2‐supported trivalent titanocene catalyst (Cat. 1: Cp2TiCl2AlCl2/MgCl2, Cat. 2: CpCp*TiCl/MgCl2, Cat. 3: Cp2TiCl/MgCl2) were prepared and tested for propylene polymerization. It was found that Cat. 1, combined with ordinary alkylaluminum as cocatalyst, produced PP containing 31.8 wt % of isotactic PP in fairly good yield. On the other hand, Cats. 2 and 3 hardly showed any activity. The effects of diisopropyldimethoxysilane (DIPDMS) on isospecificity of the Cat. 1 also were investigated. The isotactic index (I.I.) of PP was improved drastically by the addition of DIPDMS as external donor and reached the value as high as 98.4%, even in the absence of any internal donors. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3355–3359, 2000  相似文献   

4.
合成了4种α-二亚胺镍催化剂Ar—NC(R1)C(R2)N—ArNiBr2[Ar=2,6-dimethylphenyl,R1=CnH2n+1,R2=CmH2m+1;其中Cat1:m=1,n=1;Cat2:m=2,n=1;Cat3:m=3,n=1;Cat4:m=2,n=2],考察了聚合温度、催化剂浓度和催化剂配体骨架碳原子上烷基取代基对乙烯聚合反应活性、聚合物链结构和结晶性能的影响.实验发现,当配体骨架上烷基取代基R1和R2不同时,催化剂具有较高的活性,且聚合物分子量也较高;其中,Cat2和Cat3在20℃,乙烯常压和5.8mmol/L催化剂用量下,乙烯聚合活性达1.86×103kgPE/(molNi.h)和1.92×103kgPE/(molNi.h),聚合物分子量(Mw)达6.82×105和1.019×105.聚乙烯链结构分析表明,甲基支链在聚乙烯支链中占主导地位,支化度主要受反应温度的影响;同时还发现,配体骨架碳原子上烷基取代基不同的二亚胺镍催化合成聚乙烯的长支链比例相对较高,特别是在较高反应温度40℃下,己基及以上长支链比例明显增加.  相似文献   

5.
The cationic polymerization of n‐hexyloxyallene was investigated by using halogen‐bonding organocatalysts ( Cat A – Cat D ). Although the neutral catalyst Cat C showed a poor polymerization activity, iodine‐carrying bidentate cationic catalyst Cat A brought about the smooth polymerization giving rise to a polymer with Mn of 2710 under [ Cat A ]:[IBVE‐HCl]:[monomer] = 10:10:500 in mM concentrations. Judging from the color change of polymerization system and electrospray ionization mass spectra of recovered catalyst, the decomposition of organocatalyst was suggested. When α‐bromodiphenylmethane was used as an initiator, the relatively controlled polymerization proceeded at the low monomer conversion likely due to the weak halogen‐bonding interaction of Cat A with the bromide anion. On the other hand, bromine‐carrying bidentate catalyst Cat D gave low‐molecular‐weight polymers (Mn < 1550) to be less suitable for polymerization. From the 1H‐NMR spectrum, it was found that the 1,2‐polymerization unit and 2,3‐polymerization unit are included in 75:25. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 2436–2441  相似文献   

6.
Cyclopolymerization of 1,5‐hexadiene has been carried out at various temperatures in toluene by using three different stereospecific metallocene catalysts—isospecific rac‐(EBI)Zr(NMe2)2 [EBI: ethylenebis(1‐indenyl), Cat 1], syndiospecific Me2C(Cp)(Flu)ZrMe2 (Cp = 1‐cyclopentadienyl, Flu = 1‐fluorenyl, Cat 2), and aspecific CpZrMe2 (Cp*: pentamethylcyclopentadienyl, Cat 3) compounds in the presence of Al(i‐Bu)3 and [Ph3C][B(C6F5)4]—in order to study the effect of polymerization temperature and catalyst stereospecificity on the property and microstructure of poly(methylene‐1,3‐cyclopentane) (PMCP). The activities of catalysts decrease in the following order: Cat 1 > Cat 2 > Cat 3. PMCPs produced by Cat 1 are not completely soluble in toluene, but those by Cat 2 and Cat 3 are soluble in toluene. trans‐Diisotactic rich PMCPs are produced by Cat 1 and Cat 2, and cis‐atactic PMCP by Cat 3. The cis/trans ratio of PMCP by Cat 1 and Cat 2 is relatively insensitive to the polymerization temperature, but that by Cat 3 is highly sensitive to the polymerization temperature. Melting temperatures of PMCP produced increase with the cis to trans ratio of rings. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1520–1527, 2000  相似文献   

7.
Novel heterogeneous catalysts were prepared using immobilization of bis(2‐decylsulfanylethyl)amine–CrCl3 (Cr‐SNS‐D) on various supports, namely commercial TiO2, Al2O3 and magnetic Fe3O4@SiO2 nanoparticles, to yield solid catalysts denoted as support@Cr‐SNS‐D. The structure of the catalysts was confirmed on the basis of spectroscopic analyses, N2 adsorption–desorption and inductively coupled plasma (ICP) analysis. The surface areas of Al2O3@Cr‐SNS‐D, Fe3O4@SiO2@Cr‐SNS‐D and TiO2@Cr‐SNS‐D catalysts were determined to be 70, 23 and 41 m2 g?1, respectively. A decrease in surface area from that of the supports clearly establishes accurate immobilization of Cr‐SNS‐D catalyst on the surface of the parent carriers. The loading of Cr was determined to be 0.02, 0.16 and 0.11 mmol g?1 for Cr‐SNS‐D supported on TiO2, Al2O3 and Fe3O4@SiO2, respectively, using ICP analysis. After preparation and full characterization of the catalysts, ethylene trimerization reaction was accomplished in 40 ml of dry toluene, at 80°C and 25 bar ethylene pressure and in the presence of methylaluminoxane (Al/Cr = 700) within 30 min. The supported chromium catalysts were found to be efficient and selective for the ethylene trimerization reaction. The highest activity (74 650 g1‐hexene gCr?1 h?1), as well as no polyethylene formation during reaction processes, was observed when TiO2 was used as the catalyst support.  相似文献   

8.
A new generation of MgCl2‐supported catalysts for the polymerization of propene without any external donors was prepared. Two diethers, 9,9‐bis(methoxymethyl)fluorene (for Cat‐A) and 2,2‐dipropyl‐1,3‐dimethoxypropane (for Cat‐B) differing in the bulkiness of alkyl substituents in position 2, have been used as internal donors in MgCl2/TiCl4/diether‐AlR3 catalysts. The weight‐average molecular weights produced with both catalysts were over 3.5×105 at low temperature in slurry polymerization (< 40°C). Cat‐A showed higher activity and produced higher isotactic polypropene than Cat‐B. The activity of both catalysts proved to be dependent on the temperature.  相似文献   

9.
In this work, different types of polyethylene (linear, spiral nanofibers and microspheres) were obtained via confined polymerization by a PPM-supported Ziegler-Natta catalyst. Firstly, the Ziegler-Natta catalyst was chemical bonded inside the porous polymer microspheres (PPMs) supports with different pore diameter and supports size through chemical reaction. Then slightly and highly confined polymerization occurred in the PPM-supported Ziegler-Natta catalysts. SEM results illustrated that the slightly confined polymerization was easy to obtain linear and spiral nanofibers, and the nanofibers were observed in polyethylene catalyzed by PPMs-1#/cat and PPMs-2#/cat with low pore diameter (about 23 nm). Furthermore, the highly confined polymerization produced polyethylene microspheres, which obtained through other PPM-supported Ziegler-Natta catalysts with high pore diameter. In addition, high second melting point (Tm2: up to 143.3 °C) is a unique property of the polyethylene obtained by the PPM-supported Ziegler-Natta catalyst after removing the residue through physical treatment. The high Tm2 was ascribed to low surface free energy (σe), which was owing to the entanglement of polyethylene polymerized in the PPMs supports with interconnected multi-modal pore structure.  相似文献   

10.
The possibility of using R n P(O)(CH2OR′)3—n (R = alkyl, R′ = methyl or acyl, n = 0–2) polydentate phosphine oxides as external electron donors for the titanium-magnesium catalysts for isotactic polypropylene synthesis is demonstrated for the first time. The kinetics of propylene polymerization in liquid monomer at 70°C and the isotacticity and molecular-weight characteristics of the resulting polypropylene are studied as functions of the nature of the substituents at the phosphorus atoms in the external donor and the molar ratio of the cocatalyst AlEt3 to the external electron donor. Among the compounds examined, isoamyldi(methoxymethyl)phosphine oxide (R = iso-Am, R′ = Me, n = 1) is the most efficient. The isotacticity index of the polypropylene (PP) synthesized on the titanium-magnesium catalyst with this external donor is as high as 94–95%, and the activity of the catalyst (Cat) in the absence of hydrogen is 5.0–6.5 (kg PP) (g Cat)?1 h?1. With the optimum combination, the activity of this catalyst is ≈5 (kg PP) (g Cat)?1 h?1 and the isotacticity index is 94%. These parameters are close to those obtained for propylene polymerization in the absence of hydrogen on the same titanium-magnesium catalyst with phenyltriethoxysilane (external donor used in the industrial synthesis of PP): the activity is 5.6 (kg PP) (g Cat)?1 h?1, and the isotacticity index is 95%. The introduction of hydrogen into the reaction zone makes it possible to efficiently control the molecular weight of PP, increases the catalyst activity by a factor of 1.5–2.5, and somewhat decreases the isotacticity index (from 94 to 91–92%).  相似文献   

11.
This study is aimed at atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) using a novel catalyst. The bis-(2-dodecylsulfanyl-ethyl)-amine (SNS) tridentate ligand with mixed donor atoms was synthesized in high purity using inexpensive reagents and was reacted with copper(I) bromide to produce the CuBr/SNS catalyst. The catalyst mediated living polymerization of MMA yielding polymers with controlled molecular masses and narrow molecular mass distributions (PDI < 1.25). Also, the kinetic plot exhibited a linear increase of ln([M]0/[M]) versus time, indicating constant concentration of propagating radicals during the polymerization. The products were characterized by 1H NMR, 13C NMR, FT-IR, UV-VIS, GC and elemental analyses (CHNS) and by GPC.  相似文献   

12.
The substituted β-ketoiminato palladium(II) complexes, Pd[CH3C(O)CHC(NAr)CH3](Pph3)(Me) (1 Ar = α-napthyl, 2 Ar = fluorenyl), can be prepared from the reaction of (COD)PdMeCl and Pph3 with the appropriate ligand. After activation of 1 and 2 with methylaluminoxane (MAO), the resulting palladium(II) complexes are used as catalysts for ethylene polymerization, yielding linear polyethylene. The effects of temperature, co-catalyst to catalyst molar ratio and polymerization time on catalyst activities are reported. The catalyst activity decreases above −20 °C due to catalyst deactivation and optimum co-catalyst to catalyst ratio is 300:1.  相似文献   

13.
Polyethylene‐block‐poly(methyl methacrylate) (PE‐b‐PMMA) was successfully synthesized through the combination of metallocene catalysis with living radical polymerization. Terminally hydroxylated polyethylene, prepared by ethylene/allyl alcohol copolymerization with a specific zirconium metallocene/methylaluminoxane/triethylaluminum catalyst system, was treated with 2‐bromoisobutyryl bromide to produce terminally esterified polyethylene (PE‐Br). With the resulting PE‐Br as an initiator for transition‐metal‐mediated living radical polymerization, methyl methacrylate polymerization was subsequently performed with CuBr or RuCl2(PPh3)3 as a catalyst. Then, PE‐b‐PMMA block copolymers of different poly(methyl methacrylate) (PMMA) contents were prepared. Transmission electron microscopy of the obtained block copolymers revealed unique morphological features that depended on the content of the PMMA segment. The block copolymer possessing 75 wt % PMMA contained 50–100‐nm spherical polyethylene lamellae uniformly dispersed in the PMMA matrix. Moreover, the PE‐b‐PMMA block copolymers effectively compatibilized homopolyethylene and homo‐PMMA at a nanometer level. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3965–3973, 2003  相似文献   

14.
Through immobilization of two iron‐based complexes, [((2,6‐MePh)N = C(Me))2C5H3N]FeCl2 ( 1 ) and [((2,6‐iPrPh)N = C(Me))2C5H3N]FeCl2 ( 2 ), on SiO2 pretreated with tetraethylaluminoxane (TEAO), two supported iron‐based catalysts, 1 /TEAO/SiO2 ( 3 ) and 2 /TEAO/SiO2 ( 4 ), were prepared. These two supported catalysts 3 and 4 could be used to catalyze ethylene polymerization with moderate polymerization activity and prepare linear high‐density polyethylene with bimodal molecular weight distribution (MWD). It was demonstrated that immobilization of catalyst could significantly improve molecular weight (MW) of high‐MW fraction of the resultant polyethylene, as well as maintain bimodal MWD of polyethylene produced by the corresponding homogeneous catalysts. Such bimodal MWD of polyethylene produced by supported iron‐based catalysts could be well tailored by varying polymerization conditions, such as ethylene pressure and molar ratio of Al to Fe. It has been proven that TEAO is an efficient activator for both homogeneous and heterogeneous iron‐based catalysts for producing polyethylene with bimodal MWD. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5662–5669, 2004  相似文献   

15.
Two (SiO2/MgR2/MgCl2)·TiClx model catalysts are made by refluxing TiCl4 with 0.35 wt% Cr modified silica gel/alkyl Mg adducts or silica gel/alkyl Mg adducts, which are named as Cr/Ti‐based bimetallic Cat‐1 and Ti‐based monometallic Cat‐2, respectively. The kinetics, active center counting, morphology, and polymer characterizations are studied to disclose the effect of low loading Cr active sites on the Cr/Ti‐based bimetallic Cat‐1 polymerization under mild conditions. The activity of Cat‐1 is 120.4% higher than that of Cat‐2, with a 114.1% higher [C*]/[M] value. Morphology results show the Cat‐1 fragmentation in the first 3 min is highly accelerated, which helps to release buried clustered Ti sites. Differential scanning calorimetry results show that low‐temperature heat absorbing shoulder of polyethylene (PE) from Cat‐2 demonstrates the signal of low crystallinity polymer made by Cat‐2 during the first 60 s, verifying the fluffy polymer in morphology results. GPC results show PE from Cat‐1 has a higher Mw in the first 3 min while a lower Mw in the end. The Cat‐1, which release active sites faster, has a high Mw in the early time. Lower Mw in the 900 s attributes to the effect of relative lower Mw polymer made by Cr sites, compared with Cat‐2.  相似文献   

16.
A catalyst with porous polystyrene beads supported Cp2ZrCl2 was prepared and tested for ethylene polymerization with methylaluminoxane as a cocatalyst. By comparison, the porous supported catalyst maintained higher activity and produced polyethylene with better morphology than its corresponding solid supported catalyst. The differences between activities of the catalysts and morphologies of the products were reasonably explained by the fragmentation processes of support as frequently observed with the inorganic supported Ziegler–Natta catalysts. Investigation into the distribution of polystyrene in the polyethylene revealed the fact that the porous polystyrene supported catalyst had undergone fragmentation during polymerization. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3313–3319, 2003  相似文献   

17.
Summary: The effective immobilization and activation of a single‐site chromium catalyst for ethylene polymerization has been achieved using MgCl2/AlRn(OEt)3 − n supports, without the use of methylaluminoxane (MAO) or a borate activator. High catalyst activity and a spherical polyethylene‐particle morphology is obtained. Furthermore, the single‐site characteristics of the catalyst are retained, the narrow molecular weight distribution of the polymers obtained are apparent from gel permeation chromatography (GPC) and confirmed by rheological characterization.

Shear frequency dependence of the storage modulus of (♦ and ▴) polyethylene ( = 1.8–1.9) prepared using an immobilized Cr catalyst, compared to (▪) a reference polymer having = 4.1.  相似文献   


18.
The catalysis of a silica‐supported chromium system {Cr[CH(SiMe3)2]3/SiO2} was compared with a silica‐supported chromium oxide catalyst, the Phillips catalyst (CrO3/SiO2). This catalyst was prepared by the calcining of the typical silica support used for the Phillips catalyst at 600 °C and by the support of tris[bis(trimethylsilyl)methyl]chromium(III) {Cr[CH(SiMe3)2]3} on the silica. In the slurry‐phase polymerization, this catalyst conducted the polymerization of ethylene at a high activity without organoaluminum compounds as cocatalysts or scavengers. The activity per Cr was about 6–7 times higher than that of the Phillips catalyst. Upon the introduction of hydrogen to the system, the molecular weight of polyethylene did not change with the Phillips catalyst, but it decreased with the Cr[CH(SiMe3)2]3/SiO2 catalyst. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 413–419, 2003  相似文献   

19.
A supported magnesium-vanadium-aluminium catalyst was prepared by depositing –with the use of a milling technique–VOCl3 on the MgCl2(THF)2 support and subsequent activation with diethylaluminium chloride. Catalytic activity of the obtained system for ethylene polymerization was evaluated as a function of Mg/V and Al/V ratios as well as catalyst ageing time and polymerization temperature. High concentrations of THF in the catalytic system and considerable excess of an organoaluminium co-catalyst were found to have no deactivating action on vanadium active sites. The catalyst obtained is stable and its activity for ethylene polymerization is high. It yields polyethylene with higher molecular weight and higher melting point than offered by the materials produced with the use of a corresponding unsupported vanadium catalyst or a titanium-based system on the same magnesium support. Kinetic investigations confirmed stability of this catalyst irrespective of its concentration in the polymerization medium or of monomer concentration. Moreover, analysis of the kinetic findings revealed that over 80% of vanadium employed forms active polymerization sites.  相似文献   

20.
Ethylene polymerization was carried out by immobilization of rac-ethylenebis(1-indenyl)zirconium dichloride(Et(Ind)2 ZrCl2) and rac-dimethylsilylbis(1-indenyl)zirconium dichloride(Me2 Si(Ind)2 ZrCl2) preactivated with methylaluminoxane(MAO) on calcinated silica at different temperatures. Polymerizations of ethylene were conducted at different temperatures to find the optimized polymerization temperature for maximum activity of the catalyst. The Me2 Si bridge catalyst showed higher activity at the lower polymerization temperature compared to the Et bridge catalyst. The highest catalytic activities were obtained at temperatures about 50 °C and 70 °C for Me2 Si(Ind)2 ZrCl2 /MAO and Et(Ind)2 ZrCl2 /MAO catalysts systems, respectively. Inductively coupled plasma-atomic emission spectroscopy results and polymerization activity results confirmed that the best temperature for calcinating silica was about 450 °C for both catalysts systems. The melting points of the produced polyethylene were about 130 °C, which could be attributed to the linear structure of HDPE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号